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Abstract
We show that if a Fano manifold has discrete automorphism group and admits a polarized
Kähler–Einstein metric, then there exists a sequence of anticanonically balanced metrics
converging smoothly to the Kähler–Einstein metric. Our proof is based on a simplification of
Donaldson’s proof of the analogous result for balancedmetrics, replacing a delicate geometric
argument by the use of Berezin–Toeplitz quantization. We then apply this result to compute
the asymptotics of the optimal rate of convergence to the fixed point of Donaldson’s iterations
in the anticanonical setting.

Keywords Berezin–Toeplitz quantization · Balanced metrics · Fano manifolds

1 Introduction

A fundamental question in the study of a compact complex manifold X is the existence of a
canonical Riemannian metric, which reflects its complex geometry in the best possible way.
When X comes endowed with an ample holomorphic line bundle L , one should look for such
metrics inside the set of polarized Kähler metrics induced by positive Hermitian metrics on
L . In case X is a Fano manifold, so that its anticanonical line bundle K ∗

X := det(T (1,0) X)

is ample, the ideal candidate for such a canonical Riemannian metric is a polarized Kähler–
Einstein metric. By a result of Bando and Mabuchi in [2], if such a Kähler–Einstein metric
exists, then it is unique. However, finding Kähler–Einstein metrics on Fano manifolds is an
extremely difficult problem, and existence is related to deep properties of X as a complex
algebraic manifold [13, 43].

A fruitful approach in finding a Kähler–Einstein metric on X , when it exists, is to approx-
imate it by yet another type of canonical metrics, the so-called anticanonically balanced
metrics, which are associated with a natural sequence of projective embeddings of X . To
define them, first recall that a holomorphic line bundle L over a compact complex manifold
X is ample if it admits a positive Hermitian metric h ∈ Met+(L), so that its Chern curvature
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Rh ∈ �2(X ,C) induces a Kähler form on X via the formula

ωh :=
√−1

2π
Rh . (1.1)

Writing J ∈ End(T X) for the complex structure of X , this means that the following formula
defines a Riemannian metric on X , called a polarized Kähler metric,

gT X
h := ωh(·, J ·). (1.2)

Assume now that X is a Fano manifold, so that L := K ∗
X is ample, and fix p ∈ N big

enough. Consider the Kodaira embedding of X into the projective space of hyperplanes
in the space H0(X , L p) of holomorphic sections of the tensor power L p := L⊗p . Via this
embedding, L p is identified with the restriction of the dual tautological line bundle, and given
a Hermitian product H ∈ Prod(H0(X , L p)) on H0(X , L p), one gets an induced positive
Hermitian metric FS(H) ∈ Met+(L p) on L p , called Fubini–Study metric. Conversely, given
a positive Hermitian metric h p ∈ Met+(L p), one can consider the Hermitian inner product
Hilbν(h p) ∈ Prod(H0(X , L p)) defined on s1, s2 ∈ H0(X , L p) by

〈s1, s2〉Hilbν (h p) := n p

Vol(dνh)

∫
X

〈s1(x), s2(x)〉h p dνh(x), (1.3)

where dνh is the anticanonical volume form induced by h ∈ Met+(L), defined over any
contractible open subset U ⊂ X by the formula

dνh := √−1
n2 θ ∧ θ̄

|θ |2
h−1

, (1.4)

for any non-vanishing θ ∈ C∞(U , K X ), where h−1 denotes the Hermitian metric on K X

induced by h ∈ Met+(K ∗
X ). A Hermitian metric h p ∈ Met+(L p) is called anticanonically

balanced if it coincides with the Fubini–Study metric induced by the Hilbert product (1.3),
i.e., if

h p = FS(Hilbν(h p)). (1.5)

These metrics have been introduced by Donaldson [17]. Note that the original concept of
a balanced metric, introduced by Donaldson [15] and which we describe in Example 2.4,
uses the Liouville volume form ωn

h/n! in the Hilbert product (1.3) instead of the anticanonical
volume form (1.4). By a result of Berman et al. [4,§7], if an anticanonically balanced metric
h p ∈ Met+(L p) exists, then it is unique up to a multiplicative constant in Met+(L p). On
the other hand, a polarized Kähler–Einstein metric is characterized by the property that the
associated anticanonical volume form (1.4) coincides with the associated Liouville volume
form up to a multiplicative constant.

In Sect. 3, we present a new proof of the following theorem. For any m ∈ N, let | · |C m be
a fixed Cm-norm on �2(X ,R).

Theorem 1.1 Let X be a Fano manifold with discrete automorphism group admitting a polar-
ized Kähler–Einstein metric, and write L := K ∗

X . Then, for any m ∈ N, there exists Cm > 0
and a sequence of positive Hermitian metrics {h p ∈ Met+(L p)}p∈N, which are anticanoni-
cally balanced for all p ∈ N big enough and such that∣∣∣∣ 1p ωh p − ω∞

∣∣∣∣
C m

≤ Cm

p
, (1.6)
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where ω∞ ∈ �2(X ,R) is the Kähler form associated with the polarized Kähler–Einstein
metric.

This result has first been announced by Keller [25,Th.5]. A proof of existence and weak
convergence in the sense of currents has first been given by Berman et al. [4,Th.7.1], and a
proof of smooth convergence has then been given by Takahashi [40,Th. 1.3], extending the
original proof of Donaldson [15] of the analogous result for the Liouville volume form.

Our proof of Theorem 1.1 also follows the basic strategy of Donaldson’s proof, construct-
ing approximately balanced metrics using the asymptotic expansion of the Bergman kernel
along the diagonal [12, 29, 41, 47] and showing the convergence of the gradient flow of the
norm squared of the associated moment map close to a zero. However, the most technical
part of Donaldson’s proof, which consists in estimating the derivative of the moment map
from below, has no straightforward analogue in the anticanonical case. In fact, in the original
case of Donaldson, the derivative of the moment map has a geometric interpretation, which
has been clarified by Phong and Sturm in [34], giving a natural lower bound. By contrast,
in the anticanonical case of Theorem 1.1, there are no obvious geometric interpretations for
the derivative of the moment map, and adapting [34,Th.2] is a serious difficulty, which was
only overcome recently by Takahashi in [40,Prop. 3.5]. The main novelty of our method is
to replace this geometric argument by the use of the asymptotics of the spectral gap of the
Berezin transform established in [24,Th.3.1]. More precisely, we use the equivalent asymp-
totics for the spectral gap of theBerezin–Toeplitz quantum channel, recalled in Theorem 2.12,
which can be understood as the operation of dequantization followed by quantization of a
quantum observable, i.e., the Berezin–Toeplitz quantization of its Berezin symbol. This strat-
egy was inspired by the work of Fine in [18], who studied the derivative of the moment map
in the original setting of Donaldson, assuming the existence of a balanced metric.

In Sect. 4, we use Theorem 1.1 together with the techniques of [24] and the energy func-
tional of [4,§7] to establish the exponential convergence ofDonaldson’s iterations toward the
anticanonically balanced metric for each p ∈ N big enough, and compute the asymptotics
of the optimal rate of convergence as p → +∞. To explain this result, let us fix p ∈ N

big enough, and define the anticanonical Donaldson map on the space Prod(H0(X , L p)) of
Hermitian inner products on H0(X , L p) by

Tν := Hilbν ◦ FS : Prod(H0(X , L p)) −→ Prod(H0(X , L p)). (1.7)

A fixed point H ∈ Prod(H0(X , L p)) of this map is called an anticanonically balanced
product. It has been introduced by Donaldson [16, 17] for various different volume forms in
the Hilbert product (1.3), and has been used as a dynamical system approximating the corre-
sponding balanced metric, seen as the Fubini–Study metric FS(H) ∈ Met+(L p) associated
with a fixed point. Our main result in this context is the following, where we use the natural
distance on Prod(H0(X , L p)) as a symmetric space.

Theorem 1.2 Let X be a Fano manifold with discrete automorphism group and admitting a
polarized Kähler–Einstein metric. Then, for any p ∈ N big enough, there exists βp ∈ ]0, 1[
such that for any H0 ∈ Prod(H0(X , L p)), there exists an anticanonically balanced product
H ∈ Prod(H0(X , L p)) and a constant C > 0 such that for all k ∈ N, we have

dist
(
T k

ν (H0) , H
)

≤ Cβk
p. (1.8)

Furthermore, the constant βp ∈ ]0, 1[ satisfies the following estimate as p → +∞,

βp = 1 − λ1 − 4π

4π p
+ O(p−2), (1.9)
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where λ1 > 4π is the first positive eigenvalue of the Riemannian Laplacian associated with
the polarized Kähler–Einstein metric acting on C∞(X ,C), and this estimate is sharp.

This extends the results of [24,Th.4.4, Rmk.4.12] to the anticanonical setting. As
explained in Remark 4.8, this confirms a prediction of Donaldson in [17] on the compared
rates of convergence of the iterations associated with various notions of balanced products.
Note that the smooth convergence of the Kähler forms in Theorem 1.1 is necessary to com-
pute the rate of convergence (1.9). On the other hand, the proof of simple convergence in
Theorem 1.2 follows from the work of Berman in [3,Prop. 2.9], and is based on the convexity
of an appropriate energy functional, which has been established in [4,Lemma7.2] based on
the results of Berndtsson [6, 7] on the positivity of direct images. Note that the exponential
convergence of the iterations follows from the estimate (1.9) thanks to the strict lower bound
λ1 > 4π on the first positive eigenvalue of the Kähler–Einstein Laplacian, which holds under
the necessary assumption of discrete automorphism group as a consequence of a classical
result of Lichnerowicz [27] and Matsushima [33]. This lower bound plays a fundamental
role in the proofs of both Theorems 1.1 and 1.2, in particular in Proposition 3.5 to construct
approximately balanced metrics and in Proposition 3.9 via the asymptotics of the spectral
gap of the quantum channel. Theorem 1.2 also complements the work of Liu and Ma in [28],
who established the convergence of the refined approximations of Donaldson in [17,§2.2.1].

The advantage of our proof of Theorem 1.1 is that it can be adapted in a systematic way to
various choices of a volume form in the Hilbert product (1.3), leading to the various notions
of balanced metrics. In Sect. 2, we give the general setup for an arbitrary volume map (2.1)
on the space Met+(L) of positive Hermitian metrics on an ample holomorphic line bundle
L over a compact complex manifold X . This includes in particular the ν-balanced metrics
on Calabi–Yau manifolds and the canonically balanced metrics on manifolds with ample
canonical line bundle, introduced by Donaldson [17] and which we describe in Examples 2.5
and 2.6. The proof given in Sect. 3 can readily be adapted to these two cases, which do
not need any assumption on the automorphism group and are in fact easier. We present the
proof in the case of Fano manifolds only because it is the most delicate one, as the Kähler–
Einstein metric does not exist a priori. The smooth convergence of ν-balanced metrics to the
polarized Yau metric associated with dν has been outlined by Donaldson [17,§2.2], and then
established by Keller [25,Th.4.2] as a consequence of a result of Wang [45]. The differential
of the associated moment map at a ν-balanced embedding has been studied by Keller et
al. [26,§6.2]. On manifolds with ample canonical line bundle, the uniform convergence of
canonically balanced metrics to the polarized Kähler–Einstein metric, which always exists
in that case, follows from works of Tsuji [44] and Berndtsson. Our method gives smooth
convergence, and also establishes the uniform convergence for anticanonically balanced
metrics on Fano manifolds. Finally, our method also applies to the case of coupled Kähler–
Einstein metrics considered by Takahashi [40].

The adaptation of our proof for the original notion of balanced metrics requires a refined
estimate on the spectral gap of the quantum channel, whichwe establish in [23,Th.4.11]. Note
that the use of theKähler–Einstein Laplacian, which is of order two, replaces in the anticanon-
ical setting the use of the Lichnerowicz operator, which is of order four, in the original setting
of Donaldson. On the other hand, following the works of Berman and Witt Nyström [5] and
Takahashi [39], we use in [22] the method of the present paper to handle the case of general
automorphism groups, replacing Kähler–Einstein metrics by Kähler–Ricci solitons. Finally,
we also hope to apply our method to the case of metaplectically balanced metrics, giving an
approximation of the Cahen–Gutt moment map and involving a differential operator of order
six, following the program of Futaki and La Fuente-Gravy outlined in [19, 20].
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The theory of Berezin–Toeplitz quantization has first been developed by Bordemann,
Meinrenken and Schlichenmaier [8], using the work of Boutet de Monvel and Sjöstrand
on the Szegö kernel in [11] and the theory of Toeplitz structures of Boutet de Monvel and
Guillemin [10]. This paper is based instead on the theory of Ma and Marinescu [31], which
uses the off-diagonal asymptotic expansion of the Bergman kernel established by Dai et
al. [14,Th.4.18’] and which holds for an arbitrary volume form in the Hilbert product (1.3).
A comprehensive introduction of this theory can be found in the book [30]. The point of view
of quantum measurement theory on Berezin–Toeplitz quantization, which we adopt in this
paper, has been advocated by Polterovich [35, 36].

2 General setup

In this section, we consider a compact complex manifold X with dimC X = n endowed with
an ample line bundle L , together with a smooth map

ν : Met+(L) −→ M (X)

h �−→ dνh,
(2.1)

from the space Met+(L) of positive Hermitian metrics on L to the space M (X) of smooth
volume forms over X . Such a map is called a volume map. For any h ∈ Met+(L), we write
Vol(dνh) > 0 for the volume of dνh ∈ M (X).

For any h ∈ Met+(L) and p ∈ N, we write h p ∈ Met+(L p) for the induced positive
Hermitian metric on the p-th tensor power L p . Conversely, any h p ∈ Met+(L p) uniquely
determines a positive Hermitian metric h ∈ Met+(L). We write C∞(X , L p) for the space
of smooth sections of L p and

H0(X , L p) ⊂ C∞(X , L p) (2.2)

for the subspace of holomorphic sections of L p over X . We set

n p := dim H0(X , L p). (2.3)

2.1 Balancedmetrics

Recall from the classical Kodaira embedding theorem that a holomorphic line bundle L is
ample if and only if for all p ∈ N big enough, the evaluation map evx : H0(X , L p) → L p

x

is surjective for all x ∈ X and the induced Kodaira map

Kodp : X −→ P(H0(X , L p)∗),
x �−→ { s ∈ H0(X , L p) | s(x) = 0 } (2.4)

is an embedding. In this section, we fix such a p ∈ N.
We denote by Prod(H0(X , L p)) the space of Hermitian inner products on H0(X , L p),

and for any H ∈ Prod(H0(X , L p)), we denote byL (H0(X , L p), H) the space of endomor-
phisms on H0(X , L p) which are Hermitian with respect to H . In the following definition,
we introduce the basic tools of this paper. Their names will be justified in the next section.

Definition 2.1 The coherent state projector associated with H ∈ Prod(H0(X , L p)) is the
map

	H : X −→ L (H0(X , L p), H) (2.5)
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sending x ∈ X to the orthogonal projector with respect to H satisfying

Ker	H (x) = { s ∈ H0(X , L p) | s(x) = 0 }. (2.6)

The Berezin symbol associated with H ∈ Prod(H0(X , L p)) is the map

σH : L (H0(X , L p), H) −→ C∞(X ,R)

A �−→ Tr[A	H ]. (2.7)

Note that the subspace (2.6) is the hyperplane Kodp(x) ⊂ H0(X , L p) given by the
Kodaira map (2.4), and the coherent state projector 	H (x) is thus a rank-1 projector, for all
x ∈ X .

Recall that L p is identified with the pullback of the dual tautological line bundle over
P(H0(X , L p)) via the Kodaira map (2.4). Thus, given H ∈ Prod(H0(X , L p)), the induced
Fubini–Study metric on the dual of the tautological line bundle pulls back to a positive
Hermitian metric on L p . Using the coherent state projector of Definition 2.1, this translates
into the following definition.

Definition 2.2 The Fubini–Study map is the map

FS : Prod(H0(X , L p)) −→ Met+(L p), (2.8)

sending H ∈ Prod(H0(X , L p)) to the positive Hermitian metric FS(H) ∈ Met+(L p) on L p

defined for any s1, s2 ∈ H0(X , L p) and x ∈ X by

〈s1(x), s2(x)〉FS(H) := 〈	H (x) s1, s2〉H . (2.9)

Recall on the other hand the definition (1.3) of the Hilbert map

Hilbν : Met+(L p) −→ Prod(H0(X , L p)), (2.10)

which holds for a general volume map (2.1). We are now ready to introduce the main concept
of this paper.

Definition 2.3 A Hermitian metric h p ∈ Met+(L p) is called balanced with respect to ν :
Met+(L) → M (X) if it satisfies

FS ◦Hilbν(h
p) = h p. (2.11)

A Hermitian product H ∈ Prod(H0(X , L p)) is called balanced with respect to ν :
Met+(L) → M (X) if it satisfies

Hilbν ◦FS(H) = H . (2.12)

Note that if H ∈ Prod(H0(X , L p)) is a balanced product, then FS(H) ∈ Met+(L p)) is a
balanced metric, and conversely, if h p ∈ Met+(L p) is a balanced metric, then Hilbν(h p) ∈
Prod(H0(X , L p)) is a balanced product.

Example 2.4 The most fundamental example of a volume map is the Liouville volume map

ν : Met+(L) −→ M (X)

h �−→ dνh := ωn
h

n! .
(2.13)

Note that in that case, the volume Vol(X , L) := Vol(dνh) > 0 does not depend on h ∈
Met+(L). The analogue of Theorem 1.1 in this context, where the limit metric is a polarized
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Kähler metric of constant scalar curvature, has been established by Donaldson [15]. The
simple convergence of the associated Donaldson iterations as in Sect. 4 has been established
by Donaldson [16] and Sano [37,Th.1.2].

Example 2.5 The simplest example of a volume map is the volume map with a constant value
dν ∈ M (X) not depending on h ∈ Met+(L). Balanced metrics in this context are called
ν-balanced metrics, and have first been studied by Bourguignon, Li and Yau [9]. Donaldson
apply them in [17] to study the polarized Yau metric [46] associated with dν, which always
exists and is defined as the unique polarized Kähler metric such that

ωn
h

n! = c dν, (2.14)

for some multiplicative constant c > 0. This is of specific interest in case X is a Calabi-Yau

manifold, so that its canonical line bundle K X is trivial and one can take dν := √−1
n2

θ ∧θ ,
where θ ∈ H0(X , K X ) is the unique nowhere vanishing section of K X up to a multiplicative
constant. Then, the polarized Yau metric coincides with the polarized Ricci-flat metric. The
smooth convergence of the ν-balanced metrics toward the Yau metric as p → +∞ has been
established by Donaldson [17,§2.2] and by Keller [25]. In that case, the assumption on the
automorphism group is not needed. The simple convergence of the associated Donaldson
iterations as in Sect. 4 has been established by Donaldson [17,Prop. 4], and exponential
convergence as well as the asymptotics of the optimal rate of convergence have been worked
out in [24,Th.3.1, Rmk.4.12].

Example 2.6 In case the canonical line bundle L := K X of X is ample, one can consider the
canonical volume map, sending a positive Hermitian metric h ∈ Met(K X ) to the induced
volume form defined analogously to (1.4) over any contractible U ⊂ X via a non-vanishing
θ ∈ C∞(U , K X ) by

dνh := √−1
n2 θ ∧ θ

|θ |2h
. (2.15)

In that case, the polarized Kähler–Einstein metric always exists by a result of Aubin [1]
and Yau [46]. The uniform convergence of balanced metrics to the Kähler–Einstein metric
as p → +∞ in this setting has been established by Tsuji [44] and Berndtsson (see also
[4,Th.7.1] for another proof of the convergence in the weak sense of currents). Once again,
the assumption on the automorphism group is not needed in that case.

The dual version, when L := K ∗
X is ample, uses the anticanonical volume map (1.4).

Theorem 1.1 on the smooth convergence of the balanced metrics to the polarized Kähler–
Einstein metric as p → +∞ in this setting is the main result of this paper. The exponential
convergence of Donaldson’s iterations in this context is the result of Theorem 1.2. Note that
in this case, and by contrast with the case K X ample described above, even if we assume that
the automorphism group is discrete, Tian showed in [42] that a Kähler–Einstein metric does
not exist in general.

2.2 Berezin–Toeplitz quantization

In this section, we fix a positive Hermitian metric h ∈ Met+(L) and assume that p ∈ N is
big enough so that the Kodaira map (2.4) is well defined and an embedding. We consider the
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Hermitian product L2(h p) ∈ Prod(H0(X , L p)) defined for any s1, s2 ∈ C∞(X , L p) by

〈s1, s2〉L2(h p) :=
∫

X
〈s1(x), s2(x)〉h p dνh(x). (2.16)

We write

Hp := (
H0(X , L p), 〈·, ·〉L2(h p)

)
, (2.17)

for the associated Hilbert space of holomorphic sections. We write L (Hp) for the space of
Hermitian endomorphisms of Hp , and

	p : X −→ L (Hp), (2.18)

for the associated coherent projector of Definition 2.1. From the point of view of quantum
mechanics, this coherent state projector induces a quantization of the symplectic manifold
(X , ωh), seen as a classical phase space. A fundamental property in this respect is the fol-
lowing result.

Proposition 2.7 There exists a unique positive function ρh p ∈ C∞(X ,R), called the Rawns-
ley (or density of states) function, such that for any s1, s2 ∈ Hp and x ∈ X, we have

ρh p (x) 〈	p(x)s1, s2〉L2(h p) = 〈s1(x), s2(x)〉h p . (2.19)

In particular, we have ∫
X

	p(x) ρh p (x) dνh(x) = IdH p . (2.20)

Proof For any x ∈ X , consider the associated evaluation map evx : Hp → L p
x , and write

ev∗
x : L p

x → Hp for its dual with respect to h p and L2(h p). Then, for any s1, s2 ∈ Hp , we
have by definition

〈s1(x), s2(x)〉h p = 〈ev∗
x evx s1, s2〉L2(h p). (2.21)

By Definition 2.1, the endomorphisms ev∗
x evx and 	p(x) have same kernel inHp , given by

the hyperplane Kodp(x) ⊂ H0(X , L p) image of x ∈ X by the Kodaira map (2.4). As they
are both Hermitian, they also have same 1-dimensional image in Hp , so that there exists a
unique positive number ρh p (x) > 0 such that

ρh p (x)	p(x) = ev∗
x evx . (2.22)

As they both depend smoothly on x ∈ X , this defines a unique smooth positive function
ρh p ∈ C∞(X ,R) satisfying formula (2.19). The identity (2.20) then follows by integrating
formula (2.19) against dνh via the definition (2.16) of L2(h p). ��

The fundamental role played by the Rawnsley function in the study of the balancedmetrics
of Definition 2.3 comes from the following basic result.

Proposition 2.8 A positive Hermitian metric h p ∈ Met+(L p) is balanced with respect to
ν : Met+(L) → M (X) if and only if for all x ∈ X, the associated Rawnsley function
ρh p ∈ C∞(X ,R) satisfies

ρh p (x) = n p

Vol(dνh)
. (2.23)
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Proof By definition, we have

Hilbν(h
p) = n p

Vol(dνh)
L2(h p), (2.24)

so that by Definition 2.2 and Proposition 2.7, for all s1, s2 ∈ H0(X , L p) and x ∈ X we have

ρh p (x) 〈s1(x), s2(x)〉FS(Hilbν (h p)) = n p

Vol(dνh)
〈s1(x), s2(x)〉h p . (2.25)

This gives the result by Definition 2.3 of a balanced metric. ��
Proposition 2.7 describes fundamental properties of a coherent state quantization, given

in our context by the following Definition.

Definition 2.9 The Berezin–Toeplitz quantization map is defined by

Th p : C∞(X ,R) −→ L (Hp).

f �−→
∫

X
f (x)	p(x) ρh p (x) dνh(x)

(2.26)

Using Proposition 2.7, we have the following characterization of the Berezin–Toeplitz
quantization of f ∈ C∞(X ,R), for all s1, s2 ∈ Hp ,

〈Th p ( f )s1, s2〉L2(h p) =
∫

X
f (x) 〈	p(x)s1, s2〉L2(h p) ρh p (x) dνh(x)

=
∫

X
f (x) 〈s1(x), s2(x)〉h p dνh(x).

(2.27)

This shows that Definition 2.9 coincides with the usual definition of Berezin–Toeplitz quan-
tization associated with the volume form dνh ∈ M (X), as described in [30,Chap.7]. In the
same way, one readily checks that the Rawnsley function of Proposition 2.7 coincides with
the associated Bergman kernel along the diagonal, as described in [30,Chap.4]. We will give
in Proposition 2.16 its geometric description as a density of states.

In the context of quantization, the Berezin symbol (2.6) of a quantum observable A ∈
L (Hp) is interpreted as the classical observable given by the expectation value of A at
coherent states. This gives rise to the following concept, which will be the main tool of this
paper.

Definition 2.10 The Berezin–Toeplitz quantum channel is the linear operator

Eh p : L (Hp) −→ L (Hp),

A �−→ Th p
(
σL2(h p) (A)

)
.

(2.28)

In the context of quantummeasurement theory, the quantum channel describes the effect of
a measurement on quantum observables. The basic properties of the Berezin–Toeplitz quan-
tum channel have been studied in [24], based on [8]. They are summarized in the following
proposition.

Proposition 2.11 The Berezin–Toeplitz quantum channel Eh p is a positive self-adjoint oper-
ator on the real Hilbert space L (Hp) equipped with the trace norm, and its eigenvalues

{γk(h p)}n2p
k=1 counted with multiplicities satisfy

1 = γ0(h
p) > γ1(h

p) ≥ γ2(h
p) ≥ · · · ≥ γn2p

(h p) > 0, (2.29)

where 1 = γ0(h p) is associated with the eigenvector IdH p ∈ L (Hp).
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Proof By Definitions 2.1 and 2.9, for any A, B ∈ L (Hp), we have

Tr [A Eh p (B)] =
∫

X
Tr[A	p(x)] Tr[B	p(x)] ρh p (x) dνh(x), (2.30)

so that as ρh p > 0 by definition, the quantum channel Eh p is positive and self-adjoint for
the trace norm on L (Hp). Furthermore, as Tr[	p(x)] = 1 for all x ∈ X , we see from
Proposition 2.7 that Eh p (IdH p ) = IdH p . The injectivity of Eh p and the fact that γ1(h p) < 1
follow from the results of [24,Ex.4.1, Props. 4.7, 4.8]. ��

The positive number γ := 1−γ1(h p) > 0 is called the spectral gap of the quantum chan-
nel, and it measures the loss of information associated with repeated quantummeasurements.
The following estimate on its semiclassical limit as p → +∞ is central to this paper.

Theorem 2.12 [24,Th.3.1, Rmk.3.12] There exists a constant C > 0 such that for all p ∈ N,
we have ∣∣∣∣1 − γ1(h

p) − λ1(h)

4π p

∣∣∣∣ ≤ C

p2
, (2.31)

where λ1(h) > 0 is the first positive eigenvalue of the Riemannian Laplacian of (X , gT X
h )

acting on C∞(X ,C).
Moreover, there exists l ∈ N such that for any bounded subset K ⊂ Met+(L) in C l -norm

over which the volume map (2.1) is bounded from below, the constant C > 0 can be chosen
uniformly in h ∈ K .

The uniformity in the metric is not explicitly stated in [24,Th.3.1], but as noted in
[24,Rmk.4.9], it readily follows from the uniformity in the metric of the estimates on the
Bergman kernel of [14,Th.4.18’].

Furthermore, as explained in [24,Rmk.3.12], the case of a general volume form dνh ∈
M (X) follows from a trick due toMa andMarinescu in [30,§4.1.9]. This trick is based on the
fact that the L2-product (2.16) coincides with the L2-product associated with the Liouville
form ωn

h/n! and the Hermitian metric h p ⊗ hE on L p ⊗ E , where E = C is the trivial line
bundle and hE ∈ Met+(E) is defined by |1|2

hE ωn
h/n! := dνh . This implies in particular

that the Rawnsley function ρ̃h p ∈ C∞(X ,R) associated with ωn
h/n! and h p ⊗ hE as above

satisfies

ρh p dνh = ρ̃h p
ωn

h

n! . (2.32)

This gives the following version of a classical result on the asymptotics as p → +∞ of the
Rawnsley function, which is the other crucial estimate needed in this paper.

Theorem 2.13 [14,Th.1.3] There exist functions br (h) ∈ C∞(X ,R) for all r ∈ N such that
for any m, k ∈ N, there exists Cm,k > 0 such that for all p ∈ N big enough,

∣∣∣∣∣ ρh p − pn
k−1∑
r=0

1

pr
br (h)

∣∣∣∣∣
C m

≤ Cm,k

pk
, (2.33)

Furthermore, the functions br (h) ∈ C∞(X ,R), r ∈ N, depend polynomially on h ∈
Met+(L) and its successive derivatives along X, and the function b0(h) ∈ C∞(X ,R) satis-
fies the identity

b0(h) dνh = ωn
h

n! . (2.34)
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Finally, for each m, k ∈ N, there exists l ∈ N such that for any bounded subset K ⊂ Met+(L)

in C l -norm over which the volume map (2.1) is bounded from below, the constant Cm,k > 0
can be chosen uniformly in h ∈ K .

In particular, using Proposition 2.7 and the fact that Tr[	p] = 1, Theorem 2.13 implies
that the dimension of Hp satisfies the following estimate as p → +∞,

n p = Tr[IdH p ] =
∫

X
ρh p (x) dνh(x) = pn Vol(X , L) + O(pn−1), (2.35)

where Vol(X , L) > 0 is the volume of the Liouville volume map (2.13), which does not
depend on h ∈ Met+(L).

2.3 Momentmap

In this section, we fix p ∈ N big enough so that the Kodaira map (2.4) is well defined and
an embedding, and we consider the space B(H0(X , L p)) of bases of H0(X , L p). For any
s ∈ B(H0(X , L p)), we write Hs ∈ Prod(H0(X , L p)) for the Hermitian product for which
it is an orthonormal basis, and write hs ∈ Met+(L) for the positive Hermitian metric defined
through Definition 2.2 by the formula

h p
s := FS(Hs) ∈ Met+(L p). (2.36)

Write Herm(Cn p ) for the space of Hermitian matrices of Cn p . The following central tool in
the study of balanced metrics has been introduced by Donaldson [15, 17] in his moment map
picture for the study of canonical Kähler metrics.

Definition 2.14 The moment map associated with ν : Met+(L) → M (X) is the map

μν : B(H0(X , L p)) −→ Herm(Cn p ) (2.37)

defined for all s = {s j }n p
j=1 ∈ B(H0(X , L p)) by the formula

μν(s) :=
(∫

X
〈s j (x), sk(x)〉h p

s
dνhs(x)

)n p

j, k=1
− Vol(dνhs)

n p
IdCn p . (2.38)

The fundamental role of this moment map in the study of the balanced products of Defi-
nition 2.3 comes from the following basic result.

Proposition 2.15 For any s ∈ B(H0(X , L p)), the induced Hermitian product Hs ∈
Prod(H0(X , L p)) is balanced with respect to ν : Met+(L) → M (X) if and only if

μν(s) = 0. (2.39)

Proof Comparing Definition 2.2 and formula (1.3) with Definition 2.14 and formula (2.36),
we see that s = {s j }n p

j=1 ∈ B(H0(X , L p)) satisfies μν(s) = 0 if and only if
(〈s j , sk〉Hilbν (FS(Hs))

)n p

j, k=1 = IdCn p , (2.40)

i.e., if and only if s={s j }n p
j=1 is an orthonormal basis forHilbν (FS(Hs)) ∈ Prod(H0(X , L p)).

But this property characterizes Hs ∈ Prod(H0(X , L p)), so that μν(s) = 0 if and only if

Hilbν (FS(Hs)) = Hs, (2.41)

which is Definition 2.3 of a balanced product. ��
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In the following proposition, we give useful characterizations for the Fubini–Study met-
ric of Definition 2.2 and the Rawnsley function of Proposition 2.7 in terms of bases of
H0(X , L p), recovering their familiar descriptions in this context.

Proposition 2.16 For any h p ∈ Met+(L p), the associated Rawnsley function ρh p ∈
C∞(X , L p) is given for any x ∈ X by the formula

ρh p (x) =
n p∑
j=1

|s j (x)|2h p , (2.42)

where {s j }n p
j=1 ∈ B(H0(X , L p)) is an orthonormal basis for L2(h p).

For any basis s = {s j }n p
j=1 ∈ B(H0(X , L p)), the induced Fubini–Study metric h p

s ∈
Met+(L p) is characterized by the following formula, for any x ∈ X,

n p∑
j=1

|s j (x)|2
h p
s

= 1. (2.43)

In particular, we have Tr[μν(s)] = 0 for all s ∈ B(H0(X , L p)).

Proof By Proposition 2.7, if {s j }n p
j=1 ∈ B(H0(X , L p)) is an orthonormal basis for L2(h p),

then we have
n p∑
j=1

|s j |2h p =
n p∑
j=1

ρh p 〈	ps j , s j 〉L2(h p) = ρh p Tr[	p] = ρh p , (2.44)

which shows formula (2.42). On the other hand, any s = {s j }n p
j=1 ∈ B(H0(X , L p)) is by

definition an orthonormal basis for Hs ∈ Prod(H0(X , L p)), so that by Definition 2.2 we get

n p∑
j=1

|s j |2h p
s

=
n p∑
j=1

〈	Hss j , s j 〉Hs = Tr[	Hs ] = 1, (2.45)

which clearly characterizes h p
s ∈ Met+(L p). By Definition 2.14, this readily implies

Tr[μν(s)] = 0. ��
Recall Definition 2.1 for the Berezin symbol associated with a Hermitian product H ∈

Prod(H0(X , L p)).

Proposition 2.17 For any s ∈ B(H0(X , L p)) and B ∈ L (H0(X , L p), Hs), we have

σHs(e
2B) h p

eB s
= h p

s . (2.46)

Proof By Definitions 2.1 and 2.2, for any B ∈ L (H0(X , L p), Hs) and writing s = {s j }n p
j=1,

we have

σHs(e
2B) = Tr[eB	Hse

B ]

=
n p∑
j=1

〈	Hse
Bs j , eBs j 〉Hs =

n p∑
j=1

∣∣∣eBs j

∣∣∣2
h p
s
.

(2.47)

As {eBs j }n p
j=1 is an orthonormal basis for HeB s ∈ Prod(H0(X , L p)) by definition, this shows

the result by the characterization of the Fubini–Study metric given in Proposition 2.16. ��
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Consider now the free and transitive action ofGL(Cn p ) onB(H0(X , L p)) via the formula

G.s :=
{ n p∑

k=1

G jksk

}n p

j=1

, (2.48)

for any G = (G jk)
n p
j, k=1 ∈ GL(Cn p ) and s = {s j }n p

j=1 ∈ B(H0(X , L p)). By derivation, this
induces a canonical identification of tangent spaces

TsB(H0(X , L p)) � End(Cn p ), (2.49)

making B(H0(X , L p)) into a complete Riemannian manifold via the Hermitian product
defined on A, B ∈ End(Cn p ) by the formula

〈A, B〉tr := Tr[AB∗]. (2.50)

Restricting to Hermitian matrices Herm(Cn p ) ⊂ End(Cn p ), this induces for all s ∈
B(H0(X , L p)) an isometry

Herm(Cn p ) � L (H0(X , L p), Hs). (2.51)

The unitary groupU (n p) ⊂ GL(Cn p ) acts by isometries onB(H0(X , L p)), and the quotient
map

B(H0(X , L p)) −→ Prod(H0(X , L p))

s �−→ Hs
(2.52)

makes in turn Prod(H0(X , L p)) into a complete Riemannian manifold, whose geodesics are
of the form

t �−→ Het As ∈ Prod(H0(X , L p)), t ∈ R, (2.53)

for all A ∈ Herm(Cn p ).
We will write 	s : X → Herm(Cn p ) and σs : Herm(Cn p ) → C∞(X ,R) for the

coherent state projector and the Berezin symbol of Definition 2.1 associated with Hs ∈
Prod(H0(X , L p)) under the identification (2.51) induced by any s ∈ B(H0(X , L p)). In these
notations, we have the following comparison formula for theBerezin symbols associatedwith
two different bases in the corresponding identifications.

Proposition 2.18 For any A, B ∈ Herm(Cn p ) and s ∈ B(H0(X , L p)), we have

σeB s(A) = σs(e
2B)−1 σs(e

B AeB). (2.54)

Proof Write s =: {s j }n p
j=1 and eBs =: {̃s j }n p

j=1, so that by definition (2.48) of the action and

writing eB := (G jk)
n p
j,k=1, we have s̃ j = ∑n p

k=1 G jksk for all 1 ≤ j ≤ n p . Then, using

Definition 2.2, Proposition 2.17 and the fact that eB ∈ GL(Cn p ) is Hermitian, we get

σeB s(A) =
n p∑

j,k=1

〈A jk s̃k, s̃ j 〉h p

eB s
= σs(e

2B)−1
n p∑

j,k,l,m=1

〈A jk Gklsl , G jmsm〉h p
s

= σs(e
2B)−1

n p∑
l,m=1

(
eB AeB

)
ml

〈sl , sm〉h p
s
.

(2.55)

This implies the result by Definitions 2.1 and 2.2. ��
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3 Anticanonically balancedmetrics

In this section, we consider the general setup of Sect. 2 in the particular case when X is a
Fano manifold, meaning that its anticanonical line bundle K ∗

X := det(T (1,0) X) is ample. We
take L := K ∗

X and consider the anticanonical volume map ν : Met(K ∗
X ) −→ M (X) defined

by formula (1.4).

3.1 Kähler–Einsteinmetrics and anticanonical volumemap

AKähler formω ∈ �2(X ,R) on a compact complexmanifold X induces a natural Hermitian
metric hω ∈ Met(K ∗

X ), defined using the anticanonical volume form (1.4) by the formula

ωn

n! = dνhω . (3.1)

Conversely, a positive Hermitian metric h ∈ Met+(K ∗
X ) induces a Kähler form ωh ∈

�2(X ,R) as in (1.1), but ωhω do not coincide with ω in general. This motivates the fol-
lowing important notion of Kähler geometry.

Definition 3.1 A positive Hermitian metric h ∈ Met+(K ∗
X ) is called Kähler–Einstein if there

exists a constant c > 0 such that the associated Kähler form ωh satisfies

ωn
h

n! = c dνh . (3.2)

The associated polarized Kähler metric gT X
h is then called a Kähler–Einstein metric.

Let us recall some basic facts about such Kähler–Einstein metrics, which can be found for
instance in [38,Chap.3–4]. First of all, for a positive Hermitian metric h ∈ Met+(K ∗

X ) and
in our convention (1.1) for the associated Kähler form ωh ∈ �2(X ,R), the Kähler–Einstein
condition of Definition 3.1 is equivalent to the identity

ωh = 1

2π
Ric(gT X

h ), (3.3)

where Ric(gT X
h ) ∈ �2(X ,R) is the Ricci form of (X , J , gT X

h ). This implies that the scalar
curvature scal(gT X

h ) of (X , gT X
h ) is constant, given by

scal(gT X
h ) = 4πn. (3.4)

We then have the following classical result of Lichnerowicz andMatsushima, in a formwhich
can be found in [21,Chap.3] and which will be a key input in our proof of Theorem 1.1.Write
Aut(X) for the automorphism group of X as a complex manifold.

Theorem 3.2 [27, 33] Assume that Aut(X) is discrete, and let h∞ ∈ Met+(K ∗
X ) be Kähler–

Einstein. Then, the first positive eigenvalue λ1(h∞) > 0 of the Riemannian Laplacian 
h∞
of (X , gT X

h∞ ) acting on C∞(X ,C) satisfies

λ1(h∞) > 4π. (3.5)

We will often need the following variation formula for the anticanonical volume form
(1.4).
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Proposition 3.3 The anticanonical volume form (1.4) satisfies the following formula, for any
f ∈ C∞(X ,R) and h ∈ Met(K ∗

X ),

dνe f h = e f dνh . (3.6)

Proof If h−1 ∈ Met(K X ) denotes the Hermitian metric induced by h ∈ Met(K ∗
X ), then for

any f ∈ C∞(X ,R) and h ∈ Met(K ∗
X ), we have (e f h)−1 = e− f h−1. This readily implies

the result by formula (1.4). ��

Remark 3.4 Let L := K ∗
X be ample, and recall from Sect. 2.3 that we write hs ∈ Met+(L)

for the positive Hermitian metric induced by the Fubini–Study metric of Hs, for any s =
{s j }n p

j=1 ∈ B(H0(X , L p)). Restricted to such metrics, the anticanonical volume form (1.4)
admits a metric-independent characterization. In fact, using Proposition 2.16, one computes

dνhs =
⎛
⎝

n p∑
j=1

s j ⊗ s̄ j

⎞
⎠

−1/p

, (3.7)

where the expression inside the parentheses in the last line is to be considered as a positive
section of L p ⊗L

p
equippedwith its naturalR+-structure, so that its inverse p-th root defines

a smooth form. These volume forms have been introduced by Donaldson in [17,§2.2.2] to
approximate numerically Kähler–Einstein metrics on Fano manifolds, a program for which
Theorems 1.1 and 1.2 provide a rigorous basis.

3.2 Approximately balancedmetrics

Let X be a Fano manifold with Aut(X) discrete and admitting a Kähler–Einstein metric
h∞ ∈ Met+(K ∗

X ). In this section, we consider the setting of Sect. 2 with L := K ∗
X for the

anticanonical volume map (1.4).
The proof of the following result is parallel to the proof of the analogous result of Don-

aldson [15,Th.26] in the case of Example 2.4, replacing the positivity of the Lichnerowicz
operator by Theorem 3.2. All the local Cm-norms are taken with respect to the fixed Kähler–
Einstein metric.

Proposition 3.5 There exists a sequence of functions fr ∈ C∞(X ,R), r ∈ N, such that for
every k, m ∈ N, there exists a constant Ck,m > 0 such that all p ∈ N big enough, the positive
Hermitian metric

hk(p) := exp

(
k−1∑
r=1

1

pr
fr

)
h∞ ∈ Met+(L p), (3.8)

have associated Rawnsley function ρhk
p(p) ∈ C∞(X ,R) satisfying

∣∣∣∣ ρh p
k (p) − n p

Vol(dνhk (p))

∣∣∣∣
C m

≤ Ck,m pn−k . (3.9)

Proof First note by Definition 3.1 of the Kähler–Einstein metric h∞ ∈ Met+(L) that the
coefficient b0(h∞) ∈ C∞(X ,R) of Theorem 2.13 is constant. This implies the result for
k = 1.
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Let us write 
h∞ for the Riemannian Laplacian of (X , gT X
h∞ ) acting on C∞(X ,C). Using

Proposition 3.3 and a classical formula in Kähler geometry, for any f ∈ C∞(X ,R) we get

∂

∂t

∣∣∣
t=0

ωn
et f h∞

dνet f h∞
=

(
1

4π

h∞ f − f

)
ωn

h∞
dνh∞

. (3.10)

Recall by Definition 3.1 that the Riemannian volume form of (X , gT X
h∞ ) is a constant multiple

of dνh∞ . Then, Theorem3.2 shows that the restriction of the operator
( 1
4π 
h∞ − 1

)
admits an

inverse on the orthogonal of the constant functions inside L2(X ,C), so that for any function
f ∈ C∞(X ,R), there exists a function f̃ ∈ C∞(X ,R) satisfying

f −
∫

X
f

dνh∞
Vol(dνh∞)

= f̃ − 1

4π

h∞ f̃ . (3.11)

Take f := b1(h∞) ∈ C∞(X ,R) in (3.11), and consider the Rawnsley function ρh p
1 (p) ∈

C∞(X ,R) associated with the metric h1(p) := e f̃ /ph∞ ∈ Met+(L). As h1(p) → h∞
smoothly as p → +∞ by construction, we can use the uniformity in Theorem 2.13 to replace
h∞ by h1(p) in the expansion (2.33). As the coefficients in the expansion are polynomials
in the derivatives of h1(p) ∈ Met+(L), we can take the Taylor expansion as p → +∞ of
formula (2.34) to get from formulas (3.10) and (3.11) the following expansion as p → +∞
in Cm-norm for all m ∈ N,

b0(h1(p)) + p−1b1(h1(p))

= b0(h∞) + p−1
(

1

4π

h∞ f̃ − f̃

)
+ p−1b1(h∞) + O(p−2)

= b0(h∞) + p−1
∫

X
b1(h∞)

dνh∞
Vol(dνh∞)

+ O(p−2).

(3.12)

As b0(h∞) is constant by assumption, this implies that there exists a constant C p > 0 for all
p ∈ N such that as p → +∞ in Cm-norm for any m ∈ N, we have

ρh p
1 (p) = C p + O(pn−2), (3.13)

and the constant C p > 0 is determined up to order O(p−2) by taking the integral of both
sides against dνh1(p) and using formula (2.35). This implies the result for k = 2.

Let us assume now that the result holds for some k ∈ N, so that we have Hermitian metrics
hk(p) ∈ Met+(L) as in (3.8) with associated Rawnsley function satisfying the asymptotic
expansion (3.9) as p → +∞. As hk(p) → h∞ smoothly as p → +∞ by construction, we
can again apply Theorem 2.13 to ρh p

k (p), and taking the Taylor expansion as p → +∞ of the

coefficients br (hk(p)) for all 1 ≤ r ≤ k +1, we get a sequence of functions b′
r ∈ C∞(X ,R)

for 1 ≤ r ≤ k, not depending on p ∈ N, such that the asymptotic expansion (2.33) holds
for these functions. Furthermore, for every r ≤ k − 1, the function b′

r is constant over X by
assumption. We then take

hk+1(p) := e fk/pk
hk(p) ∈ Met+(L p) (3.14)

for all p ∈ N, where the function fk ∈ C∞(X ,R) is constructed as the function f̃ of formula
(3.11) for f := b′

k . One can then repeat the process above to get the result for k + 1, which
gives the result for general k ∈ N by induction. ��

Let us now consider orthonormal bases sk(p) ∈ B(H0(X , L p)) for the L2-products
L2(h p

k (p)) ∈ Prod(H0(X , L p)) induced by the Hermitian metrics of Proposition 3.5, for all
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k ∈ N and all p ∈ Nbig enough.Then, under the identification (2.51) andbyPropositions 2.16
and 2.17, for any B ∈ Herm(Cn p ) we have

h p
eB sk (p)

= σsk (p)

(
e2B

)−1
ρ−1

h p
k (p)

h p
k (p). (3.15)

The following Lemma is essentially due to Donaldson [15,Prop. 27 (1)], and we prove it here
under our conventions for convenience.

Lemma 3.6 For any k, k0, m ∈ N with k0 > n + 1 + m/2, there exists C > 0 such that for
all p ∈ N big enough, we have

∣∣ωeB sk (p) − ω∞
∣∣
C m ≤ C

p
, (3.16)

where ωeB sk (p) is the Kähler form induced by heB sk (p) ∈ Met+(L) for all p ∈ N and ω∞ is
the Kähler form induced by the Kähler–Einstein metric h∞ ∈ Met+(L).

Proof Fix k ∈ N, and note from Proposition 3.3 that Vol(dνhk (p)) → Vol(dνh∞) as p →
+∞. Using Proposition 3.5 and the estimate (2.35) for the dimension, we know that there is
a constant C > 0 such that for all p ∈ N, we have

∣∣∣∣ ρ−1
h p

k (p)
− Vol(dνhk (p))

n p

∣∣∣∣
C 0

= ρ−1
h p

k (p)

Vol(dνhk (p))

n p

∣∣∣∣ ρh p
k (p) − n p

Vol(dνhk (p))

∣∣∣∣
C 0

≤ Cp−k−n, (3.17)

so that by induction on the number m ∈ N of successive derivatives of ρ−1
h p

k (p)
and using

Proposition 3.5 up to m ∈ N, we get constants Cm > 0 such that for all p ∈ N,
∣∣∣∣ ρ−1

h p
k (p)

− Vol(dνhk (p))

n p

∣∣∣∣
C m

≤ Cm p−k−n . (3.18)

On the other hand, using the Sobolev embedding theorem as in [32,Lemma2], we get
for any m ∈ N and h ∈ Met+(L p) a constant Cm > 0 such that for all p ∈ N and any
holomorphic section s ∈ H0(X , L p), we have

|s|C m (h p) ≤ Cm p
n+m
2 ‖s‖L2(h p), (3.19)

where | · |C m (h p) denotes the Cm-norm with respect to the Chern connection of (L p, h p).
Using formula (3.8), this inequality readily extends to the approximately balanced metrics
h p

k (p) ∈ Met+(L p).
Writing now sk(p) = {s j }n p

j=1, Propositions 2.16 and 2.17 show that for all A =
(A jk)

n p
j, k=1 ∈ Herm(Cn p ), we have

σsk (p)(A) = ρ−1
h p

k (p)

n p∑
j, k=1

A jk〈sk, s j 〉h p
k (p). (3.20)

Then, using the estimates (2.35), (3.19) and (3.18) together with Cauchy–Schwarz inequality
on the trace norm, we get for all m ∈ N constants C, C ′, C ′′ > 0 such that for all A ∈
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Herm(Cn p ) and all p ∈ N, we have

|σsk (p)(A)|C m ≤
∣∣∣∣ρ−1

h p
k (p)

∣∣∣∣
C m

n p∑
j, k=1

∣∣A jk〈sk, s j 〉hk (p)

∣∣
C m

≤
(
Vol(dνhk (p))

n p
+ Cp−n−k

)
C ′ pn+ m

2 ‖A‖tr n p

≤ C ′′ pn+ m
2 ‖A‖tr .

(3.21)

This implies in particular that for all B ∈ Herm(Cn p ) with ‖B‖tr ≤ C−1 p−k0 , we have∣∣∣σsk (p)(e
2B) − 1

∣∣∣
C m

=
∣∣∣σsk (p)(e

2B − Id)
∣∣∣
C m

≤ Cpn+ m
2 −k0 . (3.22)

Now by formula (3.15) and classical properties of the Kähler form (1.1), we have

ωeB sk (p) = ωhk (p) −
√−1

2π p
∂∂ log σsk (p)

(
e2B

)
−

√−1

2π p
∂∂ log ρh p

k (p)

= ωhk (p) −
√−1

2π p
∂∂ log

(
1 + σsk (p)

(
e2B − Id

))

−
√−1

2π p
∂∂ log

(
1 +

(
Vol(dνhk (p))

n p
ρh p

k (p) − 1

))
,

(3.23)

which by Proposition 3.5 and formula (3.22) implies that for any k, k0, m ∈ N with k0 >

n + m/2, there exists C > 0 such for all B ∈ Herm(Cn p ) with ‖B‖tr ≤ C−1 p−k0 , we have

∣∣ωeB sk (p) − ωhk (p)

∣∣
C m−2 ≤ C

p
. (3.24)

By formula (3.8) for hk(p) and the corresponding formula forωhk (p) as in (3.23), this implies
the result. ��

In the case m = 0, the estimate (3.22) admits an elementary improvement. In fact, Def-
inition 2.1 together with Cauchy–Schwarz inequality and the fact that ‖	s‖tr = 1 implies
that for any ε > 0 small enough, there is C > 0 such that for any B ∈ Herm(Cn p ) with
‖B‖tr ≤ ε and any s ∈ B(H0(X , L p)), we have

|σs(e2B) − 1|C 0 ≤ C‖B‖tr . (3.25)

This inequality will be used repeatedly in all the sequel.
One of the technical differences of our situation compared to the classical situation of

Example 2.4 is the fact that the volumes of the anticanonical volume map depend on the
positive Hermitian metric. To control these volumes, we will use the following Lemma,
where for any s ∈ B(H0(X , L p)), we write dνs for the anticanonical volume form (1.4)
associated with hs ∈ Met+(L).

Lemma 3.7 For any k0, k ∈ N with k ≥ k0, there exists a constant C > 0 such that for all
p ∈ N and any B ∈ Herm(Cn p ) with ‖B‖tr ≤ C−1 p−k0 , we have∣∣∣∣

dνeB sk (p)

dνhk (p)

− Vol(dνeB sk (p))

Vol(dνhk (p))

∣∣∣∣
C 0

≤ Cp−k0−1, (3.26)

and C−1 < Vol(dνeB sk (p)) < C.
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Proof Fix k, k0 ∈ Nwith k ≥ k0. Using Proposition 3.3, for any p ∈ N and B ∈ Herm(Cn p ),
formula (3.15) gives

log
dνeB sk (p)

dνhk (p)

= − 1

p
log ρh p

k (p) − 1

p
log σsk (p)(e

2B). (3.27)

Then, using Proposition 3.5 and formula (3.25), we get a constant C > 0 such that for all
p ∈ N and all B ∈ Herm(Cn p ) with ‖B‖tr ≤ C−1 p−k0 , we have∣∣∣∣log

dνeB sk (p)

dνhk (p)

− 1

p
log

Vol(dνhk (p))

n p

∣∣∣∣
C 0

= 1

p

∣∣∣∣log
(
1 +

(
Vol(dνhk (p))

n p
ρh p

k (p) − 1

))
+ log

(
1 + σsk (p)

(
e2B − Id

))∣∣∣∣
C 0

≤ Cp−k0−1.

(3.28)

Note that we used the asymptotic expansion (2.35) for the dimension and that Vol(dνhk (p)) →
Vol(dνh) as p → +∞, which also shows that 1

p log
Vol(dνhk (p))

n p
→ 0 as p → +∞. In other

words, there exist constants Vp > 0 satisfying Vp → 1 as p → +∞ such that for all
B ∈ Herm(Cn p ) with ‖B‖tr ≤ C−1 p−k0 , we have∣∣∣∣

dνeB sk (p)

dνhk (p)

− Vp

∣∣∣∣
C 0

≤ Cp−k0−1. (3.29)

Taking the integral of both sides against dνhk (p), we see that there is C > 0 such that the
constants Vp > 0 for all p ∈ N satisfy∣∣∣∣Vp − Vol(dνeB sk (p))

Vol(dνhk (p))

∣∣∣∣ < Cp−k0−1. (3.30)

This gives the result. ��

3.3 Convergence of the balancedmetrics

In this section, we consider a Fano manifold X endowed with L := K ∗
X , and work in the

setting the anticanonical volume map ν : Met(K ∗
X ) −→ M (X) defined by formula (1.4).

The goal of this section is to establishTheorem1.1. The proof is based on the following fun-
damental link between the Berezin–Toeplitz quantum channel of Definition 2.10 associated
with an anticanonically balanced metric and the derivative of the moment map of Defini-
tion 2.14 at the corresponding anticanonically balanced product. For any s ∈ B(H0(X , L p))

and A ∈ Herm(Cn p ), write

Dsμν(A) := ∂

∂t

∣∣∣
t=0

μν(e
t As). (3.31)

To simplify notations, we will write dνs ∈ M (X) for the anticanonical volume form (1.4)
associated with hs ∈ Met+(L).

Proposition 3.8 Assume that h p ∈ Met+(L p) is balanced with respect to the anticanonical
volume form (1.4), and let sp ∈ B(H0(X , L p)) be orthonormal with respect to L2(h p).
Then, for all A ∈ Herm(Cn p ) with Tr[A] = 0 and all s ∈ B(H0(X , L p)), we have

n p

2Vol(dνsp )
Tr[A Dsp μν(A)] = Tr[A2] −

(
1 + 1

p

)
Tr[AEh p (A)]. (3.32)
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Proof Let us first compute Dsμν(A) ∈ Herm(Cn p ), for general s ∈ B(H0(X , L p)) and
A ∈ Herm(Cn p ) with Tr[A] = 0. First recall from Proposition 2.17 that

∂

∂t

∣∣∣
t=0

h p
et As

= −2σs(A) h p
s . (3.33)

Recall also that 	s : X → Herm(Cn p ) denotes the coherent state projector of Definition 2.1
associated with Hs ∈ Prod(H0(X , L p)) under the identification (2.51) induced by any s ∈
B(H0(X , L p)). Writing s =: {s j }n p

j=1, Definition 2.2 implies that for all x ∈ X , we have

	s(x) =
(
〈s j (x), sk(x)〉h p

s

)n p

j, k=1
. (3.34)

Then, by Definition 2.14 and Proposition 3.3, we compute

Dsμν(A) =
(∫

X

∂

∂t

∣∣∣
t=0

〈et As j , et Ask〉h p

et As
dνs

)n p

j, k=1

+
(∫

X
〈s j , sk〉h p

s

∂

∂t

∣∣∣
t=0

dνet As

)n p

j, k=1
−

(
∂

∂t

∣∣∣
t=0

Vol(dνet As)

n p

)
IdCn p

=
∫

X
(A	s + 	sA − 2σs(A)	s) dνs − 2

p

∫
X

σs(A)	s dνs

−
(

2

pn p

∫
X

σs(A) dνs

)
IdCn p , (3.35)

so that using Definition 2.1 and the fact that Tr[A] = 0, we get

1

2
Tr[A Dsμν(A)] =

∫
X

σs(A2) dνs −
(
1 + 1

p

) ∫
X

σs(A)2 dνs. (3.36)

On the other hand, for any h ∈ Met(L p)+ and letting sp ∈ B(H0(X , L p)) be orthonormal
with respect to L2(h p), by Definition 2.1, Proposition 2.7 and formula (2.30) for the quantum
channel of Definition 2.10, we have

Tr[A2] =
∫

X
σsp (A2) ρh p dνh,

Tr [A Eh p (A)] =
∫

X
σsp (A)2 ρh p dνh .

(3.37)

Then, comparing formulas (3.36) and (3.37) with h ∈ Met(L p)+ balanced with respect to
the anticanonical volume form (1.4), so that h p = hsp , and using Proposition 2.8, we get the
result. ��

Consider now the setting of the previous section, so that Aut(X) is discrete and X admits
a Kähler–Einstein metric h ∈ Met+(K ∗

X ). For any k ∈ N and p ∈ N big enough, let sk(p) ∈
B(H0(X , L p)) be orthonormal bases for the L2-products L2(h p

k (p)) ∈ Prod(H0(X , L p))

induced by Proposition 3.5. The key part of the proof of Theorem 1.1 is the following result,
giving a lower bound for the derivative of the moment map at the approximately balanced
bases. It is based on the asymptotics of Theorem 2.12 on the spectral gap of the quantum
channel Eh p

k (p) associated with h p
k (p), which allow us to bypass the difficult geometric

argument in the proofs of Donaldson [15] and Phong and Sturm [34] of the analogous result
for Example 2.4.
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Proposition 3.9 For any k, k0 ∈ N with k ≥ k0 > n + 1, there exists a constant ε > 0
such that for all p ∈ N big enough, for all B ∈ Herm(Cn p ) with ‖B‖tr ≤ εp−k0 and all
A ∈ Herm(Cn p ) with Tr[A] = 0, we have

n p

Vol(dνeB sk (p))
Tr[A DeB sk (p)μν(A)] ≥ ε

p
‖A‖2tr . (3.38)

Proof The proof consists of an approximate version of Proposition 3.8, whose proof will be
used in a crucial way. We will use the following inequality, which holds for any triple of Her-
mitian matrices A, B, G ∈ Herm(Cn p ) as a consequence of Cauchy–Schwarz inequality,

|Tr[ABG]| ≤ ‖A‖tr‖B‖tr‖G‖op. (3.39)

By Definition 2.1 and the fact that ‖	s‖tr = ‖	s‖op = 1, this shows that for all A ∈
Herm(Cn p ) and all s ∈ B(H0(X , L p)),

|σs(A)|C 0 ≤ ‖A‖tr and |σs(A2)|C 0 ≤ ‖A‖2tr . (3.40)

UsingProposition 2.18, the submultiplicativity of the operator normand the fact that ‖B‖op ≤
‖B‖tr for all B ∈ Herm(Cn p ), the inequality (3.39) also shows that that for any ε > 0, there
is a constant C > 0 such that for all B ∈ Herm(Cn p ) with ‖B‖tr ≤ εp−k0 and all p ∈ N,
we have

|σeB s(A)2 − σs(A)2|C 0 ≤ 2‖A‖tr

∣∣∣σs(e2B)−1σs(e
B AeB) − σs(A)

∣∣∣
C 0

≤ Cp−k0‖A‖2tr ,
(3.41)

and in the same way,

|σeB s(A2) − σs(A2)|C 0 =
∣∣∣σs(e2B)−1σs(e

B A2eB) − σs(A2)

∣∣∣
C 0

≤ Cp−k0‖A‖2tr .
(3.42)

Consider the operator Sp acting on A ∈ Herm(Cn p ) by

Sp(A) := A −
(
1 + 1

p

)
Eh p

k (p)(A). (3.43)

Assume now k ≥ k0 > n, and recall that sk(p) ∈ B(H0(X , L p)) is an orthonormal basis
for L2(h p

k (p)), for all p ∈ N big enough. Then, plugging s = eBsk(p) into (3.36) and
comparing with (3.37) for hk(p), we can use Proposition 3.5 and Lemma 3.7 together with
(3.40), (3.41) and (2.35), to get a constant C > 0 such that for all p ∈ N big enough, for all
B ∈ Herm(Cn p ) with ‖B‖tr ≤ C−1 p−k0 and for all A ∈ Herm(Cn p ) with Tr[A] = 0, we
have ∣∣∣∣∣

n p

2Vol(dνeB sk (p))
Tr[A DeB sk (p) μν(A)] − Tr[A Sp(A)]

∣∣∣∣∣
≤

∫
X

∣∣∣∣∣σeB sk (p)(A2)
n p

Vol(dνeB sk (p))

dνeB sk (p)

dνhk (p)

− σsk (p)(A2)ρh p
k (p)

∣∣∣∣∣ dνhk (p)

+
∫

X

∣∣∣∣∣σeB sk (p)(A)2
n p

Vol(dνeB sk (p))

dνeB sk (p)

dνhk (p)

− σsk (p)(A)2ρh p
k (p)

∣∣∣∣∣ dνhk (p)

≤ C pn−k0‖A‖2tr . (3.44)
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Recall that for any h ∈ Met+(L), we write λ1(h) > 0 for the first positive eigenvalue of
the Riemannian Laplacian of (X , gT X

h ) acting on C∞(X ,C). Then, formula (3.8) shows that
there exists a constant C > 0 such that for all p ∈ N, we have

|λ1(hk(p)) − λ1(h∞)| ≤ C/p. (3.45)

Using the uniformity in Theorem 2.12, this gives a constant C > 0 such that for all p ∈ N,

Tr[A Sp(A)] ≥ ‖A‖2tr −
(
1 + 1

p

)(
1 − λ1(h∞)

4π p
+ Cp−2

)
‖A‖2tr

≥
(

λ1(h∞) − 4π

4π p
− Cp−2

(
1 + 1

p

))
‖A‖2tr .

(3.46)

Using Theorem 3.2 and assuming k ≥ k0 > n + 1, we get from the estimates (3.44) and
(3.46) a constant ε > 0 such that for all p ∈ N big enough, for all B ∈ Herm(Cn p ) with
‖B‖tr < εp−k0 and all A ∈ Herm(Cn) with Tr[A] = 0, we have

n p

Vol(dνeB sk (p))
Tr[A DeB sk (p) μν(A)] ≥ ε

p
‖A‖2tr . (3.47)

This gives the result. ��
In the following result, we show that the moment map Lemma of Donaldson in

[15,Prop. 17] is valid in our setting, although we do not exhibit any associated Kähler struc-
ture.

Proposition 3.10 Fix p ∈ N and assume that there exist s ∈ B(H0(X , L p)) and λ, δ > 0
such that

(1) λ ‖μν(s)‖tr < δ ;
(2) λTr[A DeB sμν(A)] ≥ ‖A‖2tr for all A ∈ Herm(Cn p ) such that Tr[A] = 0and all B ∈

Herm(Cn p ) such that ‖B‖tr ≤ δ.

Then, there exists B ∈ Herm(Cn p ) with ‖B‖tr ≤ δ and μν(eBs) = 0.

Proof First note that for any unitary endomorphismU ∈ U (n p) and any s ∈ B(H0(X , L p)),
Definition 2.14 shows that μν(Us) = Uμν(s) U∗. Thus, for any A, B ∈ Herm(Cn p ), one
computes that

Tr[A DUsμν(A)] = ∂

∂t

∣∣∣
t=0

Tr[A μν(e
t AUs)]

= Tr[U∗ AU Dsμν(U
∗ AU )].

(3.48)

In particular, assumption (2) is equivalent to

(2′) λTr[A DUeB sμν(A)] ≥ ‖A‖2tr for all A ∈ Herm(Cn p ) such that Tr[A] = 0, allU ∈
U (n p) and all B ∈ Herm(Cn p ) such that ‖B‖tr ≤ δ.

Let us now considerμν : B(H0(X , L p)) → Herm(Cn p ) as a vector field onB(H0(X , L p))

via the identification (2.49). Let s ∈ B(H0(X , L p)) be such that assumptions (1) and (2) are
satisfied, and let st ∈ B(H0(X , L p)) for all t > 0 be the solution of the ODE{

∂
∂t st = −μν(st ) for all t ≥ 0,
s0 = s.

(3.49)

If μν(s) = 0, then the result is trivially satisfied, so that we can assume μν(s) �= 0, in
which case μν(st ) �= 0 for all t ≥ 0. Let t0 ≥ 0 be such that there exist Ut ∈ U (n p) and
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Bt ∈ Herm(Cn p )with ‖Bt‖tr ≤ δ such that st = Ut eBt s for all t ∈ [0, t0]. Using assumption
(2′) and recalling that Tr[μν] = 0 by Proposition 2.16, for all t ∈ [0, t0] we have

− λ
∂

∂t
‖μν(st )‖2tr = 2λTr[μν(st ) Dst μν(μν(st ))] ≥ 2‖μν(st )‖2tr . (3.50)

By derivation of the square, this implies λ ∂
∂t ‖μν(st )‖tr ≤ −‖μν(st )‖tr for all t ∈ [0, t0],

so that using Grönwall’s lemma with initial condition (1) and the fact that μν(st ) =
Utμν(eBt s) U∗

t , we get

‖μν(e
Bt s)‖tr = ‖μν(st )‖tr ≤ e−t/λ ‖μν(s0)‖tr <

δ

λ
e−t/λ. (3.51)

Let us now consider Prod(H0(X , L p)) as a symmetric space via the quotient map (2.52), and
recall that the geodesics are the image of the 1-parameter groups of the action of GL(Cn p )

as in formula (2.53). Then, by Eq. (3.49), the Riemannian length L(t0) ≥ 0 of the path
{t �→ Hst }t∈[0,t0] ⊂ Prod(H0(X , L p)) satisfies

L(t0) =
∫ t0

0
‖μν(st )‖tr dt <

δ

λ

∫ +∞

0
e−t/λ dt = δ. (3.52)

This means that there exists ε > 0 such that all points of {t �→ Hst }t∈[0,t0+ε] can be joined
by a geodesic of length strictly less than δ, i.e., that for each t ∈ [0, t0 + ε], there exists
Bt ∈ Herm(Cn p ) with ‖Bt‖tr ≤ δ such that Hst = HeBt s, so that there exists Ut ∈ U (n p)

such that st = Ut eBt s. Thus, I := {t0 ≥ 0 | L(t0) < δ} is non-empty, open and closed in
[0,+∞[, so that I = [0,+∞[. In particular, the path {t �→ Hst }t>0 has total Riemannian
length strictly less than δ, so that it converges to a limit point HeB∞ s ∈ Prod(H0(X , L p)) by
completeness, with B∞ ∈ Herm(Cn p ) satisfying ‖B∞‖tr ≤ δ. Finally, inequality (3.51) for
all t > 0 implies

‖μν(e
B∞s)‖tr = lim

t→+∞ ‖μν(e
Bt s)‖tr = 0. (3.53)

This gives the result. ��
With all these prerequisites in hand, we can finally give the proof of Theorem 1.1.

Proof of Theorem 1.1 First note by Proposition 2.7 and formula (3.34) that for any k ∈ N and
p ∈ N big enough, the value of the moment map of Definition 2.14 at the orthonormal basis
sk(p) ∈ B(H0(X , L p)) for L2(h p

k (p)) satisfies the following formula ,

n p

Vol(dνsk (p))
μν(sk(p)) =

∫
X

	sk (p)

(
n p

Vol(dνsk (p))

dνsk (p)

dνhk (p)

− ρh p
k (p)

)
dνhk (p). (3.54)

Thus, using Proposition 3.5 and Lemma 3.7 together with the estimate (2.35) for the dimen-
sion and the fact that ‖	s‖tr = 1 for all s ∈ B(H0(X , L p)), we get a constant C > 0 such
that for all p ∈ N, we have

n p

Vol(dνsk (p))
‖μν(sk(p))‖tr

≤ Vol(dνhk (p))

∣∣∣∣ n p

Vol(dνsk (p))

dνsk (p)

dνhk (p)

− ρh p
k (p)

∣∣∣∣
C 0

≤ Cpn−k .

(3.55)

Thus, taking k0 > n + 1, we can then choose k > k0 + n + 1, and Proposition 3.9 shows
that Proposition 3.10 applies for p ∈ N big enough and s = sk(p), with

λ = p

ε

n p

Vol(dνsk (p))
and δ = C

ε
pn+1−k . (3.56)
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This gives a sequence ofHermitian endomorphisms Bp ∈ Herm(Cn p ), p ∈ N,with‖Bp‖tr ≤
εp−k0 such that μν(eBp sk(p)) = 0 for all p ∈ N big enough. By Proposition 2.15, the
Hermitian metrics h p := h p

eB sk (p)
∈ Met+(L p) are then anticanonically balanced for all

p ∈ N big enough, and the associated Kähler forms satisfy

ωh p = p ωeB sk (p), (3.57)

where ωeB sk (p) is induced by heB sk (p). If we also chose k0 > n + 1 + m/2 for some m ∈ N,
Lemma 3.6 shows the Cm-convergence (1.6) to the Kähler–Einstein form ω∞. This estab-
lishes Theorem 1.1. ��

4 Donaldson’s iterations toward anticanonically balancedmetrics

In this section, we consider a Fano manifold X , together with its anticanonical line bundle
L := K ∗

X and the associated anticanonical volume map (1.4). We will apply Theorem 1.1 to
establish the exponential convergence of the associated Donaldson’s iterations and compute
the optimal rate of convergence.

4.1 Donaldsonmap

Our goal is to study the following dynamical system on the space Prod(H0(X , L p)) of
Hermitian inner products on H0(X , L p). To this end, recall Definition 2.2 for the Fubini–
Study map FS : Prod(H0(X , L p)) → Met+(L p).

Definition 4.1 For any p ∈ N big enough, the associated anticanonical Donaldson map is
defined by

Tν := Hilbν ◦ FS : Prod(H0(X , L p)) −→ Prod(H0(X , L p)), (4.1)

where Hilbν : Met+(L p) → Prod(H0(X , L p)) is the anticanonical Hilbert map defined by
(1.3) using the anticanonical volume form (1.4).

By construction, the balanced products of Definition 2.3 coincide with the fixed points
of the Donaldson map. Using formula (2.9) for the Fubini–Study metric and writing h p

H :=
FS(H) ∈ Met+(L p) for any H ∈ Prod(H0(X , L p)), we get the explicit description

Tν(H) = n p

Vol(dνh H )

∫
X
〈	H (x) ·, · 〉H dνh H (x), (4.2)

For any h p ∈ Met+(L p) and H ∈ Prod(H0(X , L p)), consider the natural identifications

C∞(X ,R)
∼−−→ Th p Met+(L p)

f �−→ ∂

∂t

∣∣∣
t=0

et f h p,
(4.3)

and

L (H0(X , L p), H)
∼−−→ TH Prod(H0(X , L p))

A �−→ ∂

∂t

∣∣∣
t=0

〈et A·, ·〉H .
(4.4)
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In the notations of Sect. 2.3, if s ∈ B(H0(X , L p)) is such that H = Hs, then for any
A ∈ L (H0(X , L p), H) we have

HeAs = H(e−2A ·, · ). (4.5)

In particular, the identification (4.4) differs from the identification (2.51) induced by the
quotient map (2.52) by a factor of −2.

Recall now Definitions 2.1 and 2.9.

Proposition 4.2 The derivative of the anticanonical Hilbert map at h p ∈ Met+(L p) is given
by

Dh p Hilbν : C∞(X ,R) −→ L (H0(X , L p),Hilbν(h
p)),

f �−→
(
1 + 1

p

)
Th p ( f ) − 1

p

(∫
X

f
dνh

Vol(dνh)

)
Id.

(4.6)

The derivative of the Fubini–Study map at H ∈ Prod(H0(X , L p)) is given by

DH FS : L (H0(X , L p), H) −→ C∞(X ,R),

A �−→ σH (A).
(4.7)

Proof For any f ∈ C∞(X ,R) and t ∈ R, set

h p
t := et f h p ∈ Met+(L p). (4.8)

Then, for any s1, s2 ∈ H0(X , L p), using Proposition 3.3 and the fact that Th p (1) = Id by
formula (2.27), we compute

∂

∂t

∣∣∣
t=0

〈s1, s2〉Hilbν (h p
t )

= n p

Vol(dνh)

(∫
X

∂

∂t

∣∣∣
t=0

〈s1, s2〉h p
t
dνh +

∫
X

〈s1, s2〉h p
∂

∂t

∣∣∣
t=0

dνht

)

+
(

∂

∂t

∣∣∣
t=0

n p

Vol(dνht )

) ∫
X

〈s1, s2〉h p
t
dνh

= n p

Vol(dνh p )

∫
X

(
f + 1

p
f − 1

p

∫
X

f
dνh

Vol(dνh)

)
〈s1, s2〉h p dνh

= n p

Vol(dνh p )

〈((
1 + 1

p

)
Th p ( f ) − 1

p

∫
X

f
dνh

Vol(dνh)

)
s1, s2

〉
L2(h p)

.

(4.9)

Using formula (2.24), this proves the first statement (4.6).
On the other hand, in the identifications (4.3), (4.4) and using formula (4.5), the second

statement (4.7) is a consequence of Proposition 2.17. ��
Let H ∈ Prod(H0(X , L p)) be an anticanonically balanced product, and consider the

setting of Sect. 2.2 for the anticanonically balanced metric h p
H := FS(H) ∈ Met+(L p).

Then, in particular, Definition 2.3 of a balanced product implies thatL (H0(X , L p), H) and
L (Hp) coincide as real Hilbert spaces. Via the identification (4.4), Proposition 4.2 implies
the following formula for the derivative of the anticanonical Donaldson map at a fixed point.

Corollary 4.3 The differential of the anticanonical Donaldson map at a fixed point H ∈
Prod(H0(X , L p)) is given by the following formula, for all A ∈ L (Hp),

DHTν(A) =
(
1 + 1

p

)
Eh p

H
(A) − 1

p

Tr[A]
n p

IdH p . (4.10)
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Proof Definition 2.3 of a balanced product implies that H coincides with L2(h p
H ) up to a

multiplicative constant, and Definition 2.1 then shows that the Berezin symbol maps σL2(h p
H )

and σH coincide. Using Propositions 2.7 and 2.8 for the balanced metric h p
H , we then get for

all A ∈ L (Hp),

n p

Vol(dνh H )

(∫
X

σH (A) dνh H

)
= Tr[A]. (4.11)

Then, using Definitions 2.10 and 4.1, the result follows from Proposition 4.2 and formula
(4.7). ��

4.2 Energy functional

In this section, we consider a Fano manifold X with Aut(X) is discrete, and show that if
the anticanonical Donaldson map of Definition 4.1 admits a fixed point, then its iterations
converge to this fixed point, which is unique up to a multiplicative constant. The results in
this section are essentially a combination of results of Berman [3] and Berman et al. [4]. We
gather them here as they play a central role in the proof of Theorem 1.2 given in the next
section.

Recall that we write L := K ∗
X for the anticanonical line bundle of X , and let us introduce

the energy functional E : Met+(L p) → R defined for any h p ∈ Met+(L p) by

E(h p) := − logVol(dνh). (4.12)

It has been considered in [4,§6.3] as a replacement of the Aubin–Yau functional in the
anticanonical setting. Its key property in our context is the following Lemma of Berman
[3,Lemma 2.6], for which we give a proof as it is quite elementary.

Lemma 4.4 For any h p ∈ Met+(L p), we have

E(FS ◦Hilbν(h
p)) ≤ E(h p). (4.13)

Proof Let us first show that E : Met+(L p) → R is concave along paths in Met+(L p) of the
form

t �−→ h p
t := e−t f h p, t ∈ R, (4.14)

for any f ∈ C∞(X ,R) such that e− f h p is positive. By Proposition 3.3, for any t ∈ R we
have

∂

∂t
E(h p

t ) =
∫

X
f

dνht

Vol(dνht )
, (4.15)

so that using the Cauchy–Schwarz inequality, we get

∂2

∂t2
E(h p

t ) =
(∫

X
f

dνht

Vol(dνht )

)2

−
∫

X
f 2

dνht

Vol(dνht )
≤ 0. (4.16)

Recall the setting of Sect. 2.2 for h p ∈ Met+(L p), and let us take

f := 1

p
log

(
Vol(dνh)

n p
ρh p

)
, (4.17)
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so that h p
1 = FS ◦Hilbν(h p) by Proposition 2.7, and consider the smooth function � : R →

R defined for any t ∈ R by

�(t) := E(h p
t ) − E(h p

0 ) − t
∫

X
f

dνh

Vol(dνh)
. (4.18)

Then, this function satisfies f (0) = f ′(0) = 0 by formula (4.15) and is concave by formula
(4.16), so that in particular f (1) ≤ 0 and

E(FS ◦Hilbν(h
p)) − E(h p) ≤

∫
X

f
dνh

Vol(dνh)
. (4.19)

Now using formula (2.35) for the dimension, the concavity of the logarithm implies∫
X

f
dνh

Vol(dνh)
≤ 1

p
log

(
1

n p

∫
X

ρh p dνh

)
= 0. (4.20)

This shows the result. ��
From now on, we fix a base point H0 ∈ Prod(H0(X , L p)), and identify any H ∈

Prod(H0(X , L p)) with a Hermitian endomorphism H ∈ L (H0(X , L p), H0) via the for-
mula

H = H0(H ·, ·). (4.21)

Recall that Prod(H0(X , L p)) is endowed with a natural structure of a symmetric space via
the quotient map (2.52), with geodesics given by formula (2.53). The following result is a
consequence of the results of [6, 7] on positivity of direct images.

Proposition 4.5 [4,Lemma 7.2] Assume that Aut(X) is discrete. Then, the functional � :
Prod(H0(X , L p)) → R defined for all H ∈ Prod(H0(X , L p)) by

�(H) = E(FS(H)) + 1

p

log det H

n p
(4.22)

is convex along geodesics of Prod(H0(X , L p)), and strictly convex when the geodesic is not
generated by a multiple of the identity.

The fundamental role of the energy functional (4.22) in finding anticanonically balanced
products comes from the following identity, which follows from Proposition 2.17 as in the
proof of Proposition 3.8 for all s ∈ B(H0(X , L p)) and all A ∈ Herm(Cn p ),

d

dt

∣∣∣
t=0

�(Het As) = − 2

p Vol(dνs)
Tr[μν(s)A]. (4.23)

ByProposition2.15, this implies in particular that critical points of� coincidewith anticanon-
ically balanced products, and Proposition 4.5 shows that they are unique up to amultiplicative
constant. This also implies the following result on the iterations of Donaldson’s map, due to
Berman [3,Th.4.14]. It essentially follows the proof of Donaldson [17,Prop. 4], and we give
it here as it will be used in the next section.

Proposition 4.6 Assume that Aut(X) is discrete, and let p ∈ N be such that an anti-
canonically balanced product exists. Then, for any H0 ∈ Prod(H0(X , L p)), there exists
an anticanonically balanced product H ∈ Prod(H0(X , L p)) such that

T k
ν (H0)

k→+∞−−−−→ H . (4.24)
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Proof Let us first show that for any H ∈ Prod(H0(X , L p)), we have � (Tν(H)) ≤ �(H).
By formula (4.2) and via the identification (4.21), as 	H is rank-1 we have

Tr

[
Tν(H)H−1

n p

]
= 1

Vol(dνh H )

∫
X
Tr[	H ] dνh H = 1, (4.25)

so that by concavity of the logarithm,

log detTν(H)

n p
− log det H

n p
= log det

(
Tν(H)H−1

)
n p

≤ log Tr

[
Tν(H)H−1

n p

]
= 0,

(4.26)

with equality if and only if Tν(H) = H . On the other hand, using Lemma 4.4 we get
E(Tν(FS(H))) ≤ E(FS(H)), so that � (Tν(H)) ≤ �(H), for all H ∈ Prod(H0(X , L p)).

Now by Proposition 4.5 and identity (4.23), the existence of a balanced product implies
that the functional � is bounded from below, so that in particular, the decreasing sequence
{�(T r

ν (H0))}r∈N converges to its lower bound. As the Donaldson map Tν decreases both
terms of (4.22) separately, this implies that the decreasing sequence {log det(T r

ν (H0))}r∈N
is also bounded from below, so that {det(T r

ν (H0))}r∈N is bounded in ]0,+∞[ and
1

n
log det

(
T r+1

ν (H0)T
r

ν (H0)
−1) −→ 0 as r → +∞ . (4.27)

Again by Proposition 4.5 and identity (4.23), the existence of a balanced product implies
that the functional � is proper over any subset of Prod(H0(X , L p)) with bounded deter-
minant. We thus get that the sequence {T r

ν (H0)}r∈N admits an accumulation point Hp ∈
Prod(H0(X , L p)). On the other hand, the equality case in formula (4.25) and formula (4.27)
implies

T r+1
ν (H0)T

r
ν (H0)

−1 −→ Id, as r → +∞ . (4.28)

We thus get that H ∈ Prod(H0(X , L p)) is the unique accumulation point, and satisfies
Tν(Hp) = H . This concludes the proof. ��

4.3 Exponential convergence of Donaldson’s iterations

This section is dedicated to the proof of Theorem 1.2. It follows the argument of the analogous
result in [24,Th.4.4] for the constant volume map of Example 2.5.

Consider the setting of Sect. 2.2 for an anticanonically balanced metric h p ∈ Met+(L p),
so that H := L2(h p) ∈ Prod(H0(X , L p)) is an anticanonically balanced product.

Recall that if H ∈ Prod(H0(X , L p)) is an anticanonically balanced product, then we
haveL (H0(X , L p), H) = L (Hp) as real Hilbert spaces for the trace norm. Write DHTν :
L (Hp) → L (Hp) for the differential of the Donaldson map at H in the identification (4.4).

Lemma 4.7 Let X be a Fano manifold with Aut(X) discrete admitting a polarized Kähler–
Einstein metric, and let {Hp ∈ Prod(H0(X , L p))}p∈N be a sequence of anticanonically
balanced products for all p ∈ N big enough.

Then, DHpTν is an injective self-adjoint operator acting on L (Hp) satisfying
DHpTν(Id) = Id. Furthermore, the highest eigenvalue γ1(Hp) ∈ R of its restriction to
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the subspace of traceless matrices satisfies the following estimate as p → +∞,

γ1(Hp) = 1 − λ1 − 4π

4π p
+ O(p−2), (4.29)

where λ1 > 0 is the first positive eigenvalue of the Riemannian Laplacian associated with
the polarized Kähler–Einstein metric acting on C∞(X ,C).

Proof Recall from Proposition 2.11 that the quantum channel of Definition 2.10 is a self-
adjoint operator acting on L (Hp), so that by Corollary 4.3, the differential DHpTν is self-
adjoint and satisfies DHpTν(Id) = Id. In particular, it preserves the orthogonal of the identity,
i.e., the space of traceless endomorphisms, and Corollary 4.3 implies that for all A ∈ L (Hp)

with Tr[A] = 0, we have

DHpTν(A) =
(
1 + 1

p

)
EFS(Hp)(A). (4.30)

Then, Proposition 2.11 implies that DHpTν is injective and positive as an operator acting on
L (Hp).

To establish formula (4.29), recall from Proposition 4.5 and identity (4.23) that if
Prod(H0(X , L p)) contains an anticanonically balanced product, then it is unique up to a
multiplicative constant. Furthermore, Definition 4.1 shows that Tν(cHp) = cTν(Hp) for
every c > 0, so that the spectrum of DHpTν does not depend on the chosen anticanonically
balanced product. Using Theorem 1.1, to compute the estimate (4.29), we can then assume
that Hp := L2(h(p)) for each p ∈ N, where {h(p) ∈ Met+(L)}p∈N is a sequence of positive
Hermitian metrics converging to the Kähler–Einstein metric h∞ ∈ Met+(L). The statement
is then an immediate consequence of the uniformity in Theorem 2.12, as in the proof of
Proposition 3.9. ��

Recall now that Prod(H0(X , L p)) admits a natural structure of a symmetric space via the
quotient map (2.52), and write dist(·, ·) for the associated distance. Using Lemma 4.7 and the
geometric input of the previous section, we can now give the proof of Theorem 1.2 following
[24,Th.4.4].

Proof of Theorem 1.2 Fix p ∈ N such that an anticanonically balanced product exists by
Theorem 1.1, and fix any H0 ∈ Prod(H0(X , L p)). By Proposition 4.6, there exists an anti-
canonically balanced product Hp ∈ Prod(H0(X , L p)) such that

T k
ν (H0) −→ Hp, as k → +∞ . (4.31)

Then, up to enlarging the constant C > 0 in (1.8), we can assume that H0 belongs to any
fixed neighborhood U ⊂ Prod(H0(X , L p)) of Hp . Consider Hp as a base point metric as
in (4.21), so that any H ∈ Prod(H0(X , L p)) is identified with an Hermitian endomorphism
H ∈ L (Hp) via the formula H := Hp(H ·, ·). Take a neighborhoodU ⊂ Prod(H0(X , L p))

such that there is a diffeomorphism

U −→ V × I

H �−→
(

H

det(H)
, det(H)

)
,

(4.32)

where I ⊂ R is a neighborhood of 1 ∈ R and V is a neighborhood of Hp � IdH p in the
space of positive Hermitian endomorphisms of determinant 1 acting on Hp . In particular,
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the tangent space THp V is naturally identified with the space of traceless endomorphisms in
L (Hp). Then, for any H ∈ V , the map

H �−→ Tν(H)

det(Tν(H))
(4.33)

fixes Hp , and its differential acts on traceless Hermitian endomorphisms in L (Hp) by

DHpTν − Tr[DHpTν] IdL (H p) . (4.34)

By Lemma 4.7, it is a self-adjoint operator with eigenvalues contained in ]0, 1[⊂ R, which
implies in particular that the map (4.33) is a local diffeomorphism around Hp in V . Further-
more, by the classical Hartman–Grobman theorem, the map (4.33) is conjugate by a local
homeomorphism to its linearization at Hp . In particular, taking βp ∈ ]0, 1[ as the largest
eigenvalue of (4.33), we get a constant C > 0 such that for all k ∈ N,

dist

(
T k

ν (H0)

det(T k
ν (H0))

, Hp

)
≤ Cβk

p . (4.35)

In view of (4.32), we see that to get the exponential convergence (1.8) from (4.35), we need
to show that there is a constant C > 0 such that for all k ∈ N, we have∣∣∣detT k

ν (H0) − 1
∣∣∣ < Cβk

p . (4.36)

To this end recall that the functional � : Prod(H0(X , L p)) → R of Proposition 4.5 is
decreasing under iterations of Tν and invariant with respect to the action of R+ by multipli-
cation. By (4.35) and the differentiability of �, there exists a constant C > 0 such that for
all k ∈ N, we have

0 ≤ �(T k
ν (H0)) − �(Hp) ≤ Cβr

p . (4.37)

A both terms appearing in the definition (4.22) of � are decreasing by Lemma 4.4 and
formula (4.26), respectively, we deduce in particular that for all k ∈ N big enough,

0 ≤ log det(T k
ν (H0)) ≤ Cβk

p , (4.38)

from which (4.36) follows. This completes the proof of the exponential convergence (1.8).
The asymptotic expansion (1.9) is then immediate consequence of Lemma 4.7, and the fact
that it is sharp follows from the fact that (4.33) is conjugate to its linearization (4.34) by a
local homeomorphism. ��
Remark 4.8 Consider a general compact complex manifold X equipped with an ample line
bundle L , and consider a volumemap equal to a constant value dν ∈ M (X) as inExample 2.5.
Then, the asymptotics of the optimal rate of convergence (1.9) for the associated Donaldson
map have been computed in [24,Th.3.1, Rmk.4.12], and are given by the following estimate
as p → +∞

βp = 1 − λ1

4π p
+ O(p−2), (4.39)

where λ1 > 0 is the first eigenvalue of the polarizedYaumetric associatedwith dν. Then, if X
is a Fano manifold with L := K ∗

X and if dν ∈ M (X) is a Kähler–Einstein volume form as in
Definition 3.1, Theorem 1.2 shows that the iterations of the Donaldson map associated with
the constant volume map converge faster than the iterations associated with the anticanonical
Donaldsonmap ofDefinition 4.1, as soon as p ∈ N is big enough. This behaviorwas predicted
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numerically by Donaldson [17,§2.2.2]. Note that the iterations of the Donaldson map for the
constant volume map are of no practical interest to approximate Kähler–Einstein metrics, as
one would need to know the Kähler–Einstein volume form a priori. By contrast, in case X is
a Calabi-Yau manifold, the relevant volume form dν ∈ M (X) is purely determined by the
complex geometry of the manifold, and the iterations of the Donaldson map in this case can
be used to approximate numerically the polarized Ricci-flat metric.

On the other hand, the methods of this paper also apply to manifolds with L := K X ample
and the canonical volume map of Example 2.6, giving the following estimate as p → +∞
for the rate of convergence (1.9),

βp = 1 − λ1 + 4π

4π p
+ O(p−2), (4.40)

where λ1 > 0 is the first positive eigenvalue of the Kähler–Einstein Laplacian acting on
C∞(X ,C).We then see that the iterations associatedwith the canonical volumemap converge
faster than both previous examples when p ∈ N is large enough. Note that the existence of the
Kähler–Einstein metric in this case is the easiest case of the celebrated theorem of Yau [46],
as shown by Aubin [1].

Finally, using the methods of this paper and a refined estimate on the spectral gap of the
quantum channel, it is showed in [23,Th.1.5] that the rate of convergence of iterations for
the Liouville volume map of Example 2.4 as p → +∞ satisfies

βp = 1 + O(p−2), (4.41)

which also confirms a prediction of Donaldson [17,§2.2]. Theorem 1.2 thus shows that the
convergence of the iterations of Donaldson’s map is much faster in the anticanonical case
than in the Liouville case, when p ∈ N is taken big enough.
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