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Abstract

We show that if a Fano manifold has discrete automorphism group and admits a polarized
Kihler—Einstein metric, then there exists a sequence of anticanonically balanced metrics
converging smoothly to the Kihler—Einstein metric. Our proof is based on a simplification of
Donaldson’s proof of the analogous result for balanced metrics, replacing a delicate geometric
argument by the use of Berezin—Toeplitz quantization. We then apply this result to compute
the asymptotics of the optimal rate of convergence to the fixed point of Donaldson’s iterations
in the anticanonical setting.
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1 Introduction

A fundamental question in the study of a compact complex manifold X is the existence of a
canonical Riemannian metric, which reflects its complex geometry in the best possible way.
When X comes endowed with an ample holomorphic line bundle L, one should look for such
metrics inside the set of polarized Kdhler metrics induced by positive Hermitian metrics on
L. In case X is a Fano manifold, so that its anticanonical line bundle K% := det(T 19 x)
is ample, the ideal candidate for such a canonical Riemannian metric is a polarized Kéhler—
Einstein metric. By a result of Bando and Mabuchi in [2], if such a Kidhler—Einstein metric
exists, then it is unique. However, finding Kéhler—Einstein metrics on Fano manifolds is an
extremely difficult problem, and existence is related to deep properties of X as a complex
algebraic manifold [13, 43].

A fruitful approach in finding a Kéhler—Einstein metric on X, when it exists, is to approx-
imate it by yet another type of canonical metrics, the so-called anticanonically balanced
metrics, which are associated with a natural sequence of projective embeddings of X. To
define them, first recall that a holomorphic line bundle L over a compact complex manifold
X is ample if it admits a positive Hermitian metric h € Met™ (L), so that its Chern curvature
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Ry, € Q%(X, C) induces a Kdihler form on X via the formula

wp = ——Ry. (I.1)

Writing J € End(T X) for the complex structure of X, this means that the following formula
defines a Riemannian metric on X, called a polarized Kdahler metric,

X = wn(, J0). (1.2)

Assume now that X is a Fano manifold, so that L := K7 is ample, and fix p € N big
enough. Consider the Kodaira embedding of X into the projective space of hyperplanes
in the space H%(X, L) of holomorphic sections of the tensor power L? := L®P_ Via this
embedding, L7 is identified with the restriction of the dual tautological line bundle, and given
a Hermitian product H € Prod(HY(X, L?)) on HY(X, LP), one gets an induced positive
Hermitian metric FS(H) € Met™ (L) on L?, called Fubini-Study metric. Conversely, given
a positive Hermitian metric h” € Met™ (L”), one can consider the Hermitian inner product
Hilb, (h?) € Prod(H°(X, LP)) defined on s, 5o € H*(X, L”) by

(51, 2) il (he) = % | 610, 520 (0, (1.3)
where dvy, is the anticanonical volume form induced by h € Met™ (L), defined over any
contractible open subset U C X by the formula

NG
61>,

dvy = /—1" , (1.4)

for any non-vanishing 6 € ¢*°(U, Kx), where h~! denotes the Hermitian metric on Kx
induced by & € Met™ (K%). A Hermitian metric h, € Met™ (L?) is called anticanonically
balanced if it coincides with the Fubini—Study metric induced by the Hilbert product (1.3),
ie., if

hp = FS(Hilb, (h))). (1.5)

These metrics have been introduced by Donaldson [17]. Note that the original concept of
a balanced metric, introduced by Donaldson [15] and which we describe in Example 2.4,
uses the Liouville volume form wj, /n! in the Hilbert product (1.3) instead of the anticanonical
volume form (1.4). By a result of Berman et al. [4,§ 7], if an anticanonically balanced metric
h, € Met™(LP) exists, then it is unique up to a multiplicative constant in Met™ (L?). On
the other hand, a polarized Kéhler—Einstein metric is characterized by the property that the
associated anticanonical volume form (1.4) coincides with the associated Liouville volume
form up to a multiplicative constant.

In Sect. 3, we present a new proof of the following theorem. For any m € N, let | - |¢= be
a fixed €™ -norm on Q%(X, R).

Theorem 1.1 Let X be a Fano manifold with discrete automorphism group admitting a polar-
ized Kihler-Einstein metric, and write L := K. Then, for any m € N, there exists Cp, > 0
and a sequence of positive Hermitian metrics {h, € Met+(L”)}p€N, which are anticanoni-
cally balanced for all p € N big enough and such that

‘1 sc’”,

—wp — W _
P @m P

(1.6)

P
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where wso € Q2(X, R) is the Kiihler Sform associated with the polarized Kdhler—FEinstein
metric.

This result has first been announced by Keller [25,Th.5]. A proof of existence and weak
convergence in the sense of currents has first been given by Berman et al. [4,Th.7.1], and a
proof of smooth convergence has then been given by Takahashi [40,Th. 1.3], extending the
original proof of Donaldson [15] of the analogous result for the Liouville volume form.

Our proof of Theorem 1.1 also follows the basic strategy of Donaldson’s proof, construct-
ing approximately balanced metrics using the asymptotic expansion of the Bergman kernel
along the diagonal [12, 29, 41, 47] and showing the convergence of the gradient flow of the
norm squared of the associated moment map close to a zero. However, the most technical
part of Donaldson’s proof, which consists in estimating the derivative of the moment map
from below, has no straightforward analogue in the anticanonical case. In fact, in the original
case of Donaldson, the derivative of the moment map has a geometric interpretation, which
has been clarified by Phong and Sturm in [34], giving a natural lower bound. By contrast,
in the anticanonical case of Theorem 1.1, there are no obvious geometric interpretations for
the derivative of the moment map, and adapting [34,Th. 2] is a serious difficulty, which was
only overcome recently by Takahashi in [40,Prop. 3.5]. The main novelty of our method is
to replace this geometric argument by the use of the asymptotics of the spectral gap of the
Berezin transform established in [24,Th. 3.1]. More precisely, we use the equivalent asymp-
totics for the spectral gap of the Berezin—Toeplitz quantum channel, recalled in Theorem 2.12,
which can be understood as the operation of dequantization followed by quantization of a
quantum observable, i.e., the Berezin—Toeplitz quantization of its Berezin symbol. This strat-
egy was inspired by the work of Fine in [18], who studied the derivative of the moment map
in the original setting of Donaldson, assuming the existence of a balanced metric.

In Sect. 4, we use Theorem 1.1 together with the techniques of [24] and the energy func-
tional of [4,§ 7] to establish the exponential convergence of Donaldson’s iterations toward the
anticanonically balanced metric for each p € N big enough, and compute the asymptotics
of the optimal rate of convergence as p — +oo. To explain this result, let us fix p € N
big enough, and define the anticanonical Donaldson map on the space Prod(H°(X, LP)) of
Hermitian inner products on H°(X, L) by

7, := Hilb, o FS : Prod(H°(X, L)) —> Prod(H’(X, L?)). 1.7)

A fixed point H € Prod(H%(X, L)) of this map is called an anticanonically balanced
product. It has been introduced by Donaldson [16, 17] for various different volume forms in
the Hilbert product (1.3), and has been used as a dynamical system approximating the corre-
sponding balanced metric, seen as the Fubini—Study metric FS(H) € Met™ (L?) associated
with a fixed point. Our main result in this context is the following, where we use the natural
distance on Prod(HY(X, LP)) as a symmetric space.

Theorem 1.2 Let X be a Fano manifold with discrete automorphism group and admitting a
polarized Kihler-Einstein metric. Then, for any p € N big enough, there exists B, € 10, 1]
such that for any Hy € Prod(H® (X, LP)), there exists an anticanonically balanced product
H € Prod(H°(X, L?)) and a constant C > 0 such that for all k € N, we have

dist (Z)"(Ho), H) < cp. (1.8)
Furthermore, the constant B, €10, 1{ satisfies the following estimate as p — +00,
)»1 — 4 )
:317:1_47‘{'0(]7 ) (1.9)
p
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where M1 > 47 is the first positive eigenvalue of the Riemannian Laplacian associated with
the polarized Kihler—Einstein metric acting on €°° (X, C), and this estimate is sharp.

This extends the results of [24,Th.4.4, Rmk.4.12] to the anticanonical setting. As
explained in Remark 4.8, this confirms a prediction of Donaldson in [17] on the compared
rates of convergence of the iterations associated with various notions of balanced products.
Note that the smooth convergence of the Kihler forms in Theorem 1.1 is necessary to com-
pute the rate of convergence (1.9). On the other hand, the proof of simple convergence in
Theorem 1.2 follows from the work of Berman in [3,Prop.2.9], and is based on the convexity
of an appropriate energy functional, which has been established in [4,Lemma7.2] based on
the results of Berndtsson [6, 7] on the positivity of direct images. Note that the exponential
convergence of the iterations follows from the estimate (1.9) thanks to the strict lower bound
A1 > 4 on the first positive eigenvalue of the Kéhler—Einstein Laplacian, which holds under
the necessary assumption of discrete automorphism group as a consequence of a classical
result of Lichnerowicz [27] and Matsushima [33]. This lower bound plays a fundamental
role in the proofs of both Theorems 1.1 and 1.2, in particular in Proposition 3.5 to construct
approximately balanced metrics and in Proposition 3.9 via the asymptotics of the spectral
gap of the quantum channel. Theorem 1.2 also complements the work of Liu and Ma in [28],
who established the convergence of the refined approximations of Donaldson in [17,§2.2.1].

The advantage of our proof of Theorem 1.1 is that it can be adapted in a systematic way to
various choices of a volume form in the Hilbert product (1.3), leading to the various notions
of balanced metrics. In Sect. 2, we give the general setup for an arbitrary volume map (2.1)
on the space Met* (L) of positive Hermitian metrics on an ample holomorphic line bundle
L over a compact complex manifold X. This includes in particular the v-balanced metrics
on Calabi—Yau manifolds and the canonically balanced metrics on manifolds with ample
canonical line bundle, introduced by Donaldson [17] and which we describe in Examples 2.5
and 2.6. The proof given in Sect. 3 can readily be adapted to these two cases, which do
not need any assumption on the automorphism group and are in fact easier. We present the
proof in the case of Fano manifolds only because it is the most delicate one, as the Kihler—
Einstein metric does not exist a priori. The smooth convergence of v-balanced metrics to the
polarized Yau metric associated with dv has been outlined by Donaldson [17,§ 2.2], and then
established by Keller [25,Th.4.2] as a consequence of a result of Wang [45]. The differential
of the associated moment map at a v-balanced embedding has been studied by Keller et
al. [26,§ 6.2]. On manifolds with ample canonical line bundle, the uniform convergence of
canonically balanced metrics to the polarized Kihler—Einstein metric, which always exists
in that case, follows from works of Tsuji [44] and Berndtsson. Our method gives smooth
convergence, and also establishes the uniform convergence for anticanonically balanced
metrics on Fano manifolds. Finally, our method also applies to the case of coupled Kihler—
Einstein metrics considered by Takahashi [40].

The adaptation of our proof for the original notion of balanced metrics requires a refined
estimate on the spectral gap of the quantum channel, which we establishin [23,Th.4.11]. Note
that the use of the Kdhler—Einstein Laplacian, which is of order two, replaces in the anticanon-
ical setting the use of the Lichnerowicz operator, which is of order four, in the original setting
of Donaldson. On the other hand, following the works of Berman and Witt Nystrom [5] and
Takahashi [39], we use in [22] the method of the present paper to handle the case of general
automorphism groups, replacing Kéhler—Einstein metrics by Kdhler—Ricci solitons. Finally,
we also hope to apply our method to the case of metaplectically balanced metrics, giving an
approximation of the Cahen—Gutt moment map and involving a differential operator of order
six, following the program of Futaki and La Fuente-Gravy outlined in [19, 20].
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The theory of Berezin—Toeplitz quantization has first been developed by Bordemann,
Meinrenken and Schlichenmaier [8], using the work of Boutet de Monvel and Sjostrand
on the Szego kernel in [11] and the theory of Toeplitz structures of Boutet de Monvel and
Guillemin [10]. This paper is based instead on the theory of Ma and Marinescu [31], which
uses the off-diagonal asymptotic expansion of the Bergman kernel established by Dai et
al. [14,Th.4.18’] and which holds for an arbitrary volume form in the Hilbert product (1.3).
A comprehensive introduction of this theory can be found in the book [30]. The point of view
of quantum measurement theory on Berezin—Toeplitz quantization, which we adopt in this
paper, has been advocated by Polterovich [35, 36].

2 General setup

In this section, we consider a compact complex manifold X with dim¢ X = n endowed with
an ample line bundle L, together with a smooth map

v:Mett (L) — #(X)

2.1
h —> dvy, @D

from the space Met™ (L) of positive Hermitian metrics on L to the space .# (X) of smooth
volume forms over X. Such a map is called a volume map. For any h € Met™ (L), we write
Vol(dvy) > 0 for the volume of dv, € .Z(X).

For any h € Met™ (L) and p € N, we write h? € Met*(L”) for the induced positive
Hermitian metric on the p-th tensor power L”. Conversely, any h? € Met™ (L") uniquely
determines a positive Hermitian metric 7 € Met™(L). We write ¥°° (X, L?) for the space
of smooth sections of L? and

HO(X,LP) Cc €%°(X, L") (2.2)
for the subspace of holomorphic sections of L?” over X. We set

n, = dim HO(X, L"). (2.3)

2.1 Balanced metrics

Recall from the classical Kodaira embedding theorem that a holomorphic line bundle L is
ample if and only if for all p € N big enough, the evaluation map ev, : H Ox,LP) - LY

is surjective for all x € X and the induced Kodaira map
Kod, : X — P(H°(X, LP)"), 2.4)
x —> {se HOX,LP) | s(x) =0} '

is an embedding. In this section, we fix such a p € N.

We denote by Prod(H 0(X, LP)) the space of Hermitian inner products on H 0(x, LP),
and forany H € Prod(HY(X, LP)), we denote by L(HOX, LP), H) the space of endomor-
phisms on H%(X, L?) which are Hermitian with respect to H. In the following definition,
we introduce the basic tools of this paper. Their names will be justified in the next section.

Definition 2.1 The coherent state projector associated with H € Prod(H®(X, LP)) is the
map

Ny: X — 2HX,LP), H) (2.5)
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sending x € X to the orthogonal projector with respect to H satisfying
Ker My (x) ={s € H'(X, L) | s(x) =0}. (2.6)
The Berezin symbol associated with H € Prod(H 0(X, LP)) is the map

oy LHYX,LP), H) — €®(X,R)

2.7
A +— Tr[Allgy].

Note that the subspace (2.6) is the hyperplane Kod,(x) C H O(Xx, LP) given by the
Kodaira map (2.4), and the coherent state projector ITg (x) is thus a rank-1 projector, for all
xeX.

Recall that L? is identified with the pullback of the dual fautological line bundle over
P(H%(X, L)) via the Kodaira map (2.4). Thus, given H € Prod(H°(X, L?)), the induced
Fubini—Study metric on the dual of the tautological line bundle pulls back to a positive
Hermitian metric on L?. Using the coherent state projector of Definition 2.1, this translates
into the following definition.

Definition 2.2 The Fubini—Study map is the map
FS : Prod(H’(X, L)) — Met™ (L?), (2.8)

sending H € Prod(H?(X, L)) to the positive Hermitian metric FS(H) € Met*(L”) on L?
defined for any s1, 57 € HOX,LP)andx € X by

(s1(x), s2(x))psmy = (g (x) 51, $2)H. (2.9)
Recall on the other hand the definition (1.3) of the Hilbert map
Hilb, : Met*(L?) — Prod(H°(X, L?)), (2.10)

which holds for a general volume map (2.1). We are now ready to introduce the main concept
of this paper.
Definition 2.3 A Hermitian metric h” € Met™ (L?) is called balanced with respect to v :
Mett (L) — .#(X) if it satisfies
FS o Hilb, (h?) = h?. 2.11)
A Hermitian product H € Prod(H 0(X, LP)) is called balanced with respect to v :
Mett (L) — .#(X) if it satisfies
Hilb, o FS(H) = H. (2.12)
Note that if H € Prod(H°(X, LP)) is a balanced product, then FS(H) € Met™ (L?)) is a

balanced metric, and conversely, if #? € Met* (L?) is a balanced metric, then Hilb, (h”) €
Prod(H°(X, L)) is a balanced product.

Example 2.4 The most fundamental example of a volume map is the Liouville volume map

v:Mett (L) — #(X)
W (2.13)

h+— dy, = .
n!

Note that in that case, the volume Vol(X, L) := Vol(dv;) > 0 does not depend on 2 €
Met*(L). The analogue of Theorem 1.1 in this context, where the limit metric is a polarized
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Kihler metric of constant scalar curvature, has been established by Donaldson [15]. The
simple convergence of the associated Donaldson iterations as in Sect. 4 has been established
by Donaldson [16] and Sano [37,Th.1.2].

Example 2.5 The simplest example of a volume map is the volume map with a constant value
dv € .#(X) not depending on & € Mett(L). Balanced metrics in this context are called
v-balanced metrics, and have first been studied by Bourguignon, Li and Yau [9]. Donaldson
apply them in [17] to study the polarized Yau metric [46] associated with dv, which always
exists and is defined as the unique polarized Kéhler metric such that
a)Z B
— =cdy, (2.14)
n!
for some multiplicative constant ¢ > 0. This is of specific interest in case X is a Calabi-Yau

manifold, so that its canonical line bundle Ky is trivial and one can take dv := /—1 " IR
where & € HY(X, K) is the unique nowhere vanishing section of K x up to a multiplicative
constant. Then, the polarized Yau metric coincides with the polarized Ricci-flat metric. The
smooth convergence of the v-balanced metrics toward the Yau metric as p — 400 has been
established by Donaldson [17,§2.2] and by Keller [25]. In that case, the assumption on the
automorphism group is not needed. The simple convergence of the associated Donaldson
iterations as in Sect. 4 has been established by Donaldson [17,Prop.4], and exponential
convergence as well as the asymptotics of the optimal rate of convergence have been worked
out in [24,Th.3.1, Rmk.4.12].

Example 2.6 1n case the canonical line bundle L := Kx of X is ample, one can consider the
canonical volume map, sending a positive Hermitian metric 27 € Met(Ky) to the induced
volume form defined analogously to (1.4) over any contractible U C X via a non-vanishing
0 € €U, Kx) by

2060
dvp = V1" e (2.15)
h

In that case, the polarized Kihler—Einstein metric always exists by a result of Aubin [1]
and Yau [46]. The uniform convergence of balanced metrics to the Kédhler—Einstein metric
as p — +oo0 in this setting has been established by Tsuji [44] and Berndtsson (see also
[4,Th.7.1] for another proof of the convergence in the weak sense of currents). Once again,
the assumption on the automorphism group is not needed in that case.

The dual version, when L := K7 is ample, uses the anticanonical volume map (1.4).
Theorem 1.1 on the smooth convergence of the balanced metrics to the polarized Kihler—
Einstein metric as p — 400 in this setting is the main result of this paper. The exponential
convergence of Donaldson’s iterations in this context is the result of Theorem 1.2. Note that
in this case, and by contrast with the case Ky ample described above, even if we assume that
the automorphism group is discrete, Tian showed in [42] that a Kidhler—Einstein metric does
not exist in general.

2.2 Berezin-Toeplitz quantization

In this section, we fix a positive Hermitian metric & € Met™ (L) and assume that p € N is
big enough so that the Kodaira map (2.4) is well defined and an embedding. We consider the
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Hermitian product L?(h”) € Prod(H®(X, L?)) defined for any s1, s € €°°(X, L”) by

(s1,82) 2oy = fX (s1(x), 52(x))np dvp (x). (2.16)
We write
Ay = (HOX. L), () 2 ny) (2.17)

for the associated Hilbert space of holomorphic sections. We write .Z°(%},) for the space of
Hermitian endomorphisms of .77}, and

M,: X — Z2(4), (2.18)

for the associated coherent projector of Definition 2.1. From the point of view of quantum
mechanics, this coherent state projector induces a guantization of the symplectic manifold
(X, wp), seen as a classical phase space. A fundamental property in this respect is the fol-
lowing result.

Proposition 2.7 There exists a unique positive function ppr € €°°(X, R), called the Rawns-
ley (or density of states) function, such that for any s\, s, € 7, and x € X, we have

pnr (X) (T p(x)s1, 82) 12 py = (51(X), 52(X))nr (2.19)

In particular, we have
/ T, (x) ppr (x) dop(x) = Id%/p. (2.20)
X

Proof For any x € X, consider the associated evaluation map ev, : J7, — Lf? , and write
evy : LY — t, for its dual with respect to 2” and L2(h?). Then, for any s1, 52 € J;p, we
have by definition

(s1(x), $2(x))nr = (€Vy €V S1,82) 12 pp)- (2.21)

By Definition 2.1, the endomorphisms ev’ ev, and IT, (x) have same kernel in .7Z,, given by
the hyperplane Kod, (x) C H O(X, LP?) image of x € X by the Kodaira map (2.4). As they
are both Hermitian, they also have same 1-dimensional image in J7),, so that there exists a
unique positive number ppr (x) > 0 such that

prr (x) TT, (x) = evyevy. (2.22)

As they both depend smoothly on x € X, this defines a unique smooth positive function
prr € €°° (X, R) satistying formula (2.19). The identity (2.20) then follows by integrating
formula (2.19) against dvy, via the definition (2.16) of L%(hP). O

The fundamental role played by the Rawnsley function in the study of the balanced metrics
of Definition 2.3 comes from the following basic result.

Proposition 2.8 A positive Hermitian metric h? € Mett (L?) is balanced with respect to
v : Met™(L) — .#(X) if and only if for all x € X, the associated Rawnsley function
pnr € €°(X, R) satisfies

np

Vol (2.23)

pr(x) =
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Proof By definition, we have

n
Hilb, (h”) = —L— L*(hP), 2.24
ilby, (h*) Vol(dvy) (") (2.24)
so that by Definition 2.2 and Proposition 2.7, for all sy, s2 € HO(X, L?)and x € X we have
n
Pp (X) {s1(x), 52(X))FS(Hilb, (k7)) = ngh) (s1(x), $2(X))np- (2.25)
This gives the result by Definition 2.3 of a balanced metric. O

Proposition 2.7 describes fundamental properties of a coherent state quantization, given
in our context by the following Definition.

Definition 2.9 The Berezin—Toeplitz quantization map is defined by

Tpp : €°(X, R) — ZL(H;).

(2.26)
S /Xf(X) T, (x) ppr (x) dvg (x)

Using Proposition 2.7, we have the following characterization of the Berezin—Toeplitz
quantization of f € €°°(X, R), for all s, 53 € ),

(The (f)s1, 82) 1200y :/X S ) (T (x)s1, 52) 12 (py Pe (X) dvp (x)
(2.27)
:/x ) (s1(x), s2(x)) e dvp (x).

This shows that Definition 2.9 coincides with the usual definition of Berezin—Toeplitz quan-
tization associated with the volume form dv;, € .Z(X), as described in [30,Chap.7]. In the
same way, one readily checks that the Rawnsley function of Proposition 2.7 coincides with
the associated Bergman kernel along the diagonal, as described in [30,Chap. 4]. We will give
in Proposition 2.16 its geometric description as a density of states.

In the context of quantization, the Berezin symbol (2.6) of a quantum observable A €
Z()) is interpreted as the classical observable given by the expectation value of A at
coherent states. This gives rise to the following concept, which will be the main tool of this

paper.
Definition 2.10 The Berezin—Toeplitz quantum channel is the linear operator
Enr + L() — L(H),
P d (2.28)
A — Ty (072000 (A)) .

In the context of quantum measurement theory, the quantum channel describes the effect of
a measurement on quantum observables. The basic properties of the Berezin—Toeplitz quan-
tum channel have been studied in [24], based on [8]. They are summarized in the following
proposition.

Proposition 2.11 The Berezin—Toeplitz quantum channel &,p is a positive self-adjoint oper-
ator on the real Hilbert space £ (7)) equipped with the trace norm, and its eigenvalues

2
{yi (WP )}Zi | counted with multiplicities satisfy
L=y0(h") > yi(h") = y2(hP) = -+ = 7,0 (hF) > 0, (2.29)

where 1 = yo(hP) is associated with the eigenvector Idt}fp € ZL(Hp).
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Proof By Definitions 2.1 and 2.9, for any A, B € .Z(¢,), we have
Tr[A & (B)] = / Tr[ATI, (x)] Te[BI1,(x)] ppe (x) dvp (x), (2.30)
X

so that as ppr > 0 by definition, the quantum channel &}» is positive and self-adjoint for
the trace norm on £ (7}). Furthermore, as Tr[I1,(x)] = 1 for all x € X, we see from
Proposition 2.7 that &,r (Id s,) = 1d #,. The injectivity of &,» and the fact that y; (h?) < 1
follow from the results of [24,Ex.4.1, Props.4.7,4.8]. O

The positive number y := 1 —y;(h?) > 01is called the spectral gap of the quantum chan-
nel, and it measures the loss of information associated with repeated quantum measurements.
The following estimate on its semiclassical limit as p — 400 is central to this paper.

Theorem 2.12 [24,Th.3.1, Rmk. 3.12] There exists a constant C > 0 such that forall p € N,
we have

L=y (") - (2.31)

IA

A(h) C
4 p p?’
where A1 (h) > 0 is the first positive eigenvalue of the Riemannian Laplacian of (X, ghTX)
acting on €*° (X, C).

Moreover; there exists | € N such that for any bounded subset K C Met™ (L) in €' -norm
over which the volume map (2.1) is bounded from below, the constant C > 0 can be chosen
uniformly inh € K.

The uniformity in the metric is not explicitly stated in [24,Th.3.1], but as noted in
[24,Rmk. 4.9], it readily follows from the uniformity in the metric of the estimates on the
Bergman kernel of [14,Th.4.18].

Furthermore, as explained in [24,Rmk. 3.12], the case of a general volume form dv;, €
A (X) follows from a trick due to Ma and Marinescu in [30,§ 4.1.9]. This trick is based on the
fact that the L2-product (2.16) coincides with the L2-product associated with the Liouville
form wj, /n! and the Hermitian metric 27 ® hf on LP ® E, where E = C is the trivial line
bundle and hf € Met* (E) is defined by |1|25 ) /n! := dvy. This implies in particular
that the Rawnsley function ppr € €°°(X, R) associated with w} /n! and h” ® hE as above

satisfies

wn

onr dvy = Phr n—’( (2.32)

This gives the following version of a classical result on the asymptotics as p — +oo of the
Rawnsley function, which is the other crucial estimate needed in this paper.

Theorem 2.13 [14,Th. 1.3] There exist functions b, (h) € €°°(X, R) for all r € N such that
foranym, k € N, there exists Cy, x > 0 such that for all p € N big enough,

k—1 1 Coi
pir — "y —br(h)| < 2= (2.33)
r=0 @m p

Furthermore, the functions b,(h) € €¢°°(X,R), r € N, depend polynomially on h €
Mett (L) and its successive derivatives along X, and the function by(h) € € (X, R) satis-
fies the identity

a)n
bo(h) dvy, = —~. (2.34)

n!
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Finally, foreachm, k € N, there exists| € N such that for any bounded subset K C Met™* (L)
in €' -norm over which the volume map (2.1) is bounded from below, the constant Cnik>0
can be chosen uniformly in h € K.

In particular, using Proposition 2.7 and the fact that Tr[T1,] = 1, Theorem 2.13 implies

that the dimension of J7), satisfies the following estimate as p — +00,

np =Trldy,] = /;( onr (x) dvp(x) = p" Vol(X, L) + O(p" 1), (2.35)

where Vol(X, L) > 0 is the volume of the Liouville volume map (2.13), which does not
depend on i € Met™(L).

2.3 Moment map

In this section, we fix p € N big enough so that the Kodaira map (2.4) is well defined and
an embedding, and we consider the space %’(HO(X, LP)) of bases of HO(X, L?). For any
s € B(H°(X, LP)), we write Hy € Prod(H°(X, L”)) for the Hermitian product for which
it is an orthonormal basis, and write s € Met™ (L) for the positive Hermitian metric defined
through Definition 2.2 by the formula

h? := FS(Hy) € Met™ (LP). (2.36)

Write Herm (C"?) for the space of Hermitian matrices of C"». The following central tool in
the study of balanced metrics has been introduced by Donaldson [15, 17] in his moment map
picture for the study of canonical Kihler metrics.

Definition 2.14 The moment map associated with v : Met™ (L) — .# (X) is the map
wy : BH°(X, L)) —> Herm(C"?) (2.37)
defined for all s = {s; }'}il e BHO(X, LP)) by the formula

"y Vol(dvp,) 1d

My (8) = (/x (55 (x0), s(x))p ths(X)) crr- (2.38)

jok=1 np

The fundamental role of this moment map in the study of the balanced products of Defi-
nition 2.3 comes from the following basic result.

Proposition 2.15 For any s € B(HO(X, LP)), the induced Hermitian product Hy €
Prod(HY(X, LP)) is balanced with respect to v : Met™ (L) — .4 (X) if and only if

[y (s) = 0. (2.39)

Proof Comparing Definition 2.2 and formula (1.3) with Definition 2.14 and formula (2.36),
we see thats = {Sj};l.":l e B(H(X, LP)) satisfies u1,,(s) = 0 if and only if

((s;, Sk)Hile(FS(Hs)));f'kzl =Idcnp, (2.40)

i.e.,ifandonlyifs={s; }';":1 is an orthonormal basis for Hilb, (FS(Hs)) € Prod(H%(X, L?)).
But this property characterizes Hs € Prod(H 0(X, L?)), so that 11,,(s) = 0 if and only if

Hilb, (FS(Hs)) = Hs, (2.41)

which is Definition 2.3 of a balanced product. O
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In the following proposition, we give useful characterizations for the Fubini—Study met-
ric of Definition 2.2 and the Rawnsley function of Proposition 2.7 in terms of bases of
HO (X, LP?), recovering their familiar descriptions in this context.

Proposition 2.16 For any h? € Met™(L?), the associated Rawnsley function ppr €
€ (X, LP) is given for any x € X by the formula

np

() = 15 ()70, (2.42)
=1

where {sj}';”:l € B(H(X, LP)) is an orthonormal basis for L*(h?).
For any basis s = {s; }?il e B(H(X, LP)), the induced Fubini-Study metric hf €
Met™ (LP) is characterized by the following formula, for any x € X,

np

Do lsi )y = 1. (2.43)

In particular, we have Tr[u,(s)] = 0 for all s € BH(X, LP)).

Proof By Proposition 2.7, if {sj} np s #(H°(X, LP)) is an orthonormal basis for L2(h?),
then we have

np np
D silie =D o (Tpsj.sj) 2y = i Te[Tp] = pio, (2.44)
j=1 j=1

which shows formula (2.42). On the other hand, any s = {Sj};p:l e B(HY(X,LP)) is by
definition an orthonormal basis for Hy € Prod(H%(X, L)), so that by Definition 2.2 we get

np np
Do lsiliy = D (Masj.sjdm, = Trllp] = 1, (2.45)
j=1 j=1

which clearly characterizes hf € Mett(L?). By Definition 2.14, this readily implies
Trlwy(s)] = 0. u]

Recall Definition 2.1 for the Berezin symbol associated with a Hermitian product H €
Prod(H(X, L7)).

Proposition 2.17 Foranys € B(H°(X, L?)) and B € £(H°(X, LP), Hy), we have

on, (e*P)hPy = hf. (2.46)

Proof By Definitions 2.1 and 2.2, for any B € L(HX, L), Hy) and writing s = {vj}
we have

j=r

OH, (623) = Tr[eBl'IHseB]

np np

—Z l'IHse s],e Si)H, Z

Jj=1

2.47
EBS] (2.47)

As{eBs ]} " ” | is an orthonormal basis for H,s5 € Prod(H 0(x, LP)) by definition, this shows
the result by the characterization of the Fubini—Study metric given in Proposition 2.16. 0O
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Consider now the free and transitive action of GL(C"») on Z(H°(X, LP)) viathe formula

np

np
Gs:= {ZG,W} : (2.48)
k=1

j=1
forany G = (G ,-k);'f’kzl € GL(C") and's = {s; }’]’f’: | € Z(H°(X, LP)). By derivation, this
induces a canonical identification of tangent spaces

T.B(H(X, LP)) ~ End(C"»), (2.49)

making Z(H°(X, L)) into a complete Riemannian manifold via the Hermitian product
defined on A, B € End(C"») by the formula

(A, B);r = Tr[AB*]. (2.50)
Restricting to Hermitian matrices Herm(C"?) < End(C"»), this induces for all s €
B(H°(X, LP)) an isometry
Herm(C"r) ~ Z(H(X, LP), H). (2.51)
The unitary group U (n,) C GL(C"?) acts by isometries on Z(H 0(X, LP)), and the quotient
map
B(H(X, LP)) —> Prod(H(X, L))

2.52
s —> Hg ( )

makes in turn Prod(H°(X, L?)) into a complete Riemannian manifold, whose geodesics are
of the form

t —> Huag € Prod(H (X, L"), t € R, (2.53)

for all A € Herm(C"»).

We will write Tl : X — Herm(C"») and oy : Herm(C"?) — %°°(X, R) for the
coherent state projector and the Berezin symbol of Definition 2.1 associated with Hy €
Prod(H°(X, LP)) under the identification (2.51) induced byanys € B(HY(X, LP)).Inthese
notations, we have the following comparison formula for the Berezin symbols associated with
two different bases in the corresponding identifications.

Proposition 2.18 Forany A, B € Herm(C"?) and s € B(H°(X, LP)), we have

0,5,(A) = og(e*B) " og(eP Aeb). (2.54)
Proof Write s =: {s; };": | and eBs = [5; };l”: 1» so that by definition (2.48) of the action and
writing 8 = (ij)r;,”kzl, we have §; = 2221 Gjisi forall 1 < j < n,. Then, using
Definition 2.2, Proposition 2.17 and the fact that el e GL(C"») is Hermitian, we get

np np
og(A) = Y (AuSLSyr, =o€ Y (AjGust, G jmsm)yy
j k=1 o j el m=1
/ S (2.55)
p
= Gs(ezB)_l Z (eBAeB> / <S1, sm)hsp-
Lm=1 "
This implies the result by Definitions 2.1 and 2.2. O
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3 Anticanonically balanced metrics

In this section, we consider the general setup of Sect. 2 in the particular case when X is a
Fano manifold, meaning that its anticanonical line bundle K} := det(T19 X) is ample. We
take L := K} and consider the anticanonical volume map v : Met(K%) — .#(X) defined
by formula (1.4).

3.1 Kahler-Einstein metrics and anticanonical volume map

A Kihler form w € Q%(X, R) on a compact complex manifold X induces a natural Hermitian
metric i, € Met(K%), defined using the anticanonical volume form (1.4) by the formula

a)n

— =dy, . 3.1
n! ¢

Conversely, a positive Hermitian metric 7 € Met*(K;) induces a Kahler form w;, €
Q%(X,R) as in (1.1), but wp,, do not coincide with @ in general. This motivates the fol-
lowing important notion of Kihler geometry.

Definition 3.1 A positive Hermitian metric & € Met™ (K %) is called Kdhler—Einstein if there
exists a constant ¢ > 0 such that the associated Kéhler form wy, satisfies

wn

—h — cdvy,. (3.2)
n!

The associated polarized Kéhler metric ghTX is then called a Kdahler—Einstein metric.

Let us recall some basic facts about such Kdhler—Einstein metrics, which can be found for
instance in [38,Chap.3—4]. First of all, for a positive Hermitian metric &1 € Met™ (K %) and
in our convention (1.1) for the associated Kiihler form w;, € (X, R), the Kihler—Einstein
condition of Definition 3.1 is equivalent to the identity

1
Ric(g™X), 33
wp =5 ic(g, ™) (3.3)

where Ric(g/*) € Q*(X, R) is the Ricci form of (X, J, gI *). This implies that the scalar
curvature scal(ghTX ) of (X, g,{x ) is constant, given by

scal(g! ) = 4mn. (34

We then have the following classical result of Lichnerowicz and Matsushima, in a form which
can be found in [21,Chap. 3] and which will be a key input in our proof of Theorem 1.1. Write
Aut(X) for the automorphism group of X as a complex manifold.

Theorem 3.2 [27, 33] Assume that Aut(X) is discrete, and let hoo € Met"'(K;‘() be Kihler—
Einstein. Then, the first positive eigenvalue Ai(hoo) > 0 of the Riemannian Laplacian A,
of (X, ghTof) acting on €*° (X, C) satisfies

Ai(hoo) > 4m. (3.5

We will often need the following variation formula for the anticanonical volume form
(1.4).
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Proposition 3.3 The anticanonical volume form (1.4) satisfies the following formula, for any
fe?*(X,R)and h € Met(K}),

dv,r), = e’ dvy,. (3.6)

Proof 1f h~! € Met(Kx) denotes the Hermitian metric induced by & € Met(K %) then for
any f € €*(X,R) and h € Met(K%), we have (e/h)~t = e~/ h~L. This readily implies
the result by formula (1.4). O

Remark 3.4 Let L := K} be ample, and recall from Sect. 2.3 that we write hs € Met™ (L)
for the positive Hermitian metric induced by the Fubini—Study metric of Hg, for any s =
{s j};l-"z | € B(H 0(X, LP")). Restricted to such metrics, the anticanonical volume form (1.4)
admits a metric-independent characterization. In fact, using Proposition 2.16, one computes

—1/p

p
dvp, = ZSj@Ej ) (3.7)
i=1

where the expression inside the parentheses in the last line is to be considered as a positive
sectionof LP @ L" equipped with its natural R -structure, so that its inverse p-th root defines
a smooth form. These volume forms have been introduced by Donaldson in [17,§2.2.2] to
approximate numerically Kihler—Einstein metrics on Fano manifolds, a program for which
Theorems 1.1 and 1.2 provide a rigorous basis.

3.2 Approximately balanced metrics

Let X be a Fano manifold with Aut(X) discrete and admitting a Kidhler—Einstein metric
heo € Met+(K3“(). In this section, we consider the setting of Sect. 2 with L := K;‘( for the
anticanonical volume map (1.4).

The proof of the following result is parallel to the proof of the analogous result of Don-
aldson [15,Th.26] in the case of Example 2.4, replacing the positivity of the Lichnerowicz
operator by Theorem 3.2. All the local 4™ -norms are taken with respect to the fixed Kidhler—
Einstein metric.

Proposition 3.5 There exists a sequence of functions f, € €*°(X,R), r € N, such that for
everyk, m € N, there exists a constant C , > 0 such that all p € N big enough, the positive

Hermitian metric
k—1 1
hy(p) == exp (Z p,fr) hoo € Met™(LP), (3.8)
r=1

have associated Rawnsley function Pk (p) € ¢ (X, R) satisfying

np

- ___r <C n—k, 3.9
phlf’(p) Vol(dvhk(p)) = CempP (3.9

@m

Proof First note by Definition 3.1 of the Kihler—Einstein metric hoo € Met™ (L) that the
coefficient bo(ho) € €°° (X, R) of Theorem 2.13 is constant. This implies the result for
k=1.
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Let us write Ay, for the Riemannian Laplacian of (X, g;% TXY acting on € (X, C). Using
Proposition 3.3 and a classical formula in Kihler geometry, for any f € °°(X, R) we get

3 o, o
2 S =(4n Ano f — f> (3.10)

0t 11=0 dv,isp, dvhoo

Recall by Definition 3.1 that the Riemannian volume form of (X, 8he, TX) is a constant multiple
of dvy, . Then, Theorem 3.2 shows that the restriction of the operator ( =AY ) admits an

inverse on the orthogonal of the constant Nfunctions inside L2(X, C), so that for any function
f € €°°(X, R), there exists a function f € (X, R) satisfying

e _ o A G.11)
f= / ! Vol(dvy,_.) =f- o :

Take f := b1(ho) € €°(X,R) in (3.11), and consider the Rawnsley function Pl (p) €

€ (X, R) associated with the metric h1(p) := e//Phy, € MetT(L). As hi(p) — heo
smoothly as p — +00 by construction, we can use the uniformity in Theorem 2.13 to replace
heo by h1(p) in the expansion (2.33). As the coefficients in the expansion are polynomials
in the derivatives of /1(p) € Met™ (L), we can take the Taylor expansion as p — +oco of
formula (2.34) to get from formulas (3.10) and (3.11) the following expansion as p — 400
in ™ -norm for allm € N,

bo(h1(p)) + p~'bi(h1(p))

= bo(hoo) + p~' (i

4 Ahoch_ f>+P7]bl(hoo)+0(P72) (312)

_ —1 -2
— botheo) + p /bl(hooiwd S+ 0

As bo(hso) is constant by assumption, this implies that there exists a constant C,, > 0 for all
p € Nsuch that as p — +00 in €™ -norm for any m € N, we have

Py =Cp+ 0" ™), (3.13)

and the constant C,, > 0 is determined up to order O( p~?) by taking the integral of both
sides against dvy, () and using formula (2.35). This implies the result for k = 2.

Let us assume now that the result holds for some k € N, so that we have Hermitian metrics
hx(p) € Met™ (L) as in (3.8) with associated Rawnsley function satisfying the asymptotic
expansion (3.9) as p — 400. As hx(p) — hs smoothly as p — 400 by construction, we
can again apply Theorem 2.13 to Pr? (p) and taking the Taylor expansion as p — 400 of the
coefficients b, (hx (p)) forall 1 <r < k+ 1, we get a sequence of functions b, € €*°(X, R)
for 1 < r <k, not depending on p € N, such that the asymptotic expansion (2.33) holds
for these functions. Furthermore, for every r < k — 1, the function b/, is constant over X by
assumption. We then take

his1(p) == e™/P hy(p) € Mett(LP) (3.14)

forall p € N, where the function f; € ¥°° (X, R) is constructed as the function f of formula
(3.11) for f := bj.. One can then repeat the process above to get the result for k 4 1, which
gives the result for general k € N by induction. O

Let us now consider orthonormal bases sy (p) € B(HY(X, L)) for the L2-pr0ducts
L2(h ,’: (p)) € Prod(H 0(X, L?)) induced by the Hermitian metrics of Proposition 3.5, for all
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k € Nandall p € Nbigenough. Then, under the identification (2.51) and by Propositions 2.16
and 2.17, for any B € Herm(C"») we have

—1
2B -1
hfssk(p) = Os.(p) (e ) PP () hy (p). (3.15)

The following Lemma is essentially due to Donaldson [15,Prop. 27 (1)], and we prove it here
under our conventions for convenience.

Lemma3.6 Foranyk, kg, m € Nwithkog > n + 1+ m/2, there exists C > 0 such that for
all p € N big enough, we have

c

o <= (3.16)
= p

[@esy () = @oc

where w,sg, () is the Kdhler form induced by hsg, () € Mett (L) forall p € N and ws is
the Kihler form induced by the Kihler—Einstein metric hoo, € Mett(L).

Proof Fix k e N, and note from Proposition 3.3 that Vol(dvy,()) — Vol(dv,, ) as p —
~+o00. Using Proposition 3.5 and the estimate (2.35) for the dimension, we know that there is
a constant C > 0 such that for all p € N, we have

L G
h,’:(l’) np 40
_1 Vol(dvy, () n
o Y| M | e g
"o n, PR T Nol @) o =7 @17

so that by induction on the number m € N of successive derivatives of p,?,,l and using

« (P)
Proposition 3.5 up to m € N, we get constants Cy;, > 0 such that for all p € N,

‘ 1 VOl(dvhk(p))

o —k—n
e < Cup™ . (3.18)

gm

On the other hand, using the Sobolev embedding theorem as in [32,Lemma?2], we get
for any m € N and h € Met™(L?) a constant C,, > 0 such that for all p € N and any
holomorphic section s € HO(X, LP), we have

n+m

Islenary < Co p 2 Isll 2u0)s (3.19)

where | - |¢mry denotes the " -norm with respect to the Chern connection of (L”, h?).
Using formula (3.8), this inequality readily extends to the approximately balanced metrics
hY (p) € Met™ (LP).

Writing now sx(p) = {sj}jil’ Propositions 2.16 and 2.17 show that for all A =
(Aj0)}"—; € Herm(C"7), we have

np

Osu(p)(A) =p;£1(p) > Aji(sic S 42 - (3.20)
j. k=1

Then, using the estimates (2.35), (3.19) and (3.18) together with Cauchy—Schwarz inequality
on the trace norm, we get for all m € N constants C, C’, C” > 0 such that for all A €
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Herm(C"r) and all p € N, we have

np
|os (p) (A)|gm < ,th()) Z | A ji(se. ) (p) @m
Vol(dvy, ) B (3.21)
< < - «(p) n—k C/pn+2 ”A”tr np
p

< C"p" 3 Al

This implies in particular that for all B € Herm(C"») with || B||;» < C~!p~%0, we have

o5 (€)= 1’(,% = |osp(e* = Id)\w < cprtih, (3.22)

Now by formula (3.15) and classical properties of the Kihler form (1.1), we have
V1= 2 V1=
By (p) = Ohi(p) — %E%Jlogosk(p) (e B) - ﬂaalogphf(m
/—1_
= ony(p) = 5 99log (140w (2 —1d)) (3.23)

V1= VOl(dvhk(p))

which by Proposition 3.5 and formula (3.22) implies that for any k, kg, m € N with kg >
n +m/2, there exists C > 0 such for all B € Herm(C"») with || B||;» < C~!p~%0, we have

c
}weBSk(p) — @hy(p) @m=2 = ; (324)
By formula (3.8) for /14 (p) and the corresponding formula for wy, () as in (3.23), this implies
the result. o

In the case m = 0, the estimate (3.22) admits an elementary improvement. In fact, Def-
inition 2.1 together with Cauchy—Schwarz inequality and the fact that ||I1s||;, = 1 implies
that for any ¢ > 0 small enough, there is C > 0 such that for any B € Herm(C"») with
|Bll;r <¢andanys e Z(H°(X, L)), we have

los(e*®) = 1jg0 < C||Bl|sr. (3.25)

This inequality will be used repeatedly in all the sequel.

One of the technical differences of our situation compared to the classical situation of
Example 2.4 is the fact that the volumes of the anticanonical volume map depend on the
positive Hermitian metric. To control these volumes, we will use the following Lemma,
where for any s € B(H 0(X, LP)), we write dvg for the anticanonical volume form (1.4)
associated with hg € Met™(L).

Lemma 3.7 For any ko, k € N with k > ko, there exists a constant C > 0 such that for all
p € Nand any B € Herm(C"?) with || B||;r < C~!p=%0, we have

sp)  VOUBesp) | ko (3.26)
dvi(p) Vol(dvi(p)) lgo — ’

dv,s

and C~! < Vol(dv, s, () < C.
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Proof Fixk, ko € Nwithk > kq. Using Proposition 3.3, forany p € Nand B € Herm(C"»),
formula (3.15) gives
dv,s 1 1
log —< P — " jog pp  — = log s, () (€2B). (3.27)
duhk(p) p hy (p) p sk (p)

Then, using Proposition 3.5 and formula (3.25), we get a constant C > 0 such that for all
p € Nand all B € Herm(C"») with || B||;, < C~!p~%0, we have

’10 dVeBsk(p) B l log Vol(dvp, (p))

dvnpy P np %0
1 Vol(dv 2
= [log <1 + (Mphi’(m - 1)) + log (1 + T5(p) (6’23 - Id)) 3-28)
p np o
S Cpfk()fl.

Note that we used the asymptotic expansion (2.35) for the dimension and that Vol(dvy, (p)) —
VOl(thk(p))
np
words, there exist constants V,, > 0 satisfying V,, — 1 as p — +o0 such that for all

B € Herm(C"») with ||B|,, < C~'p~*, we have

Vol(dvy,) as p — 400, which also shows that % log — 0 as p — +o00. In other

dvess, (p) v

< cpho-t, (3.29)
dvp(p)

%0
Taking the integral of both sides against dvy, (), we see that there is C > 0 such that the
constants V), > 0 for all p € N satisfy

Vol (dv
| Yollversy ) | _ kot (3.30)
VOl(dvhk(p))
This gives the result. o
3.3 Convergence of the balanced metrics
In this section, we consider a Fano manifold X endowed with L := K ;‘(, and work in the

setting the anticanonical volume map v : Met(K%) — .#(X) defined by formula (1.4).

The goal of this section is to establish Theorem 1.1. The proofis based on the following fun-
damental link between the Berezin—Toeplitz quantum channel of Definition 2.10 associated
with an anticanonically balanced metric and the derivative of the moment map of Defini-
tion 2.14 at the corresponding anticanonically balanced product. For any s € Z(H(X, LP))
and A € Herm(C"r), write

d
Dsp(4) = —| [y (e's). (3.31)

To simplify notations, we will write dvg € .4 (X) for the anticanonical volume form (1.4)
associated with hg € Met™(L).

Proposition 3.8 Assume that h? € Met* (LP) is balanced with respect to the anticanonical
volume form (1.4), and let s, € 2(H(X, LP)) be orthonormal with respect to L2(hP).
Then, for all A € Herm(C"r) with Tr[A] = 0 and all s € B(HO(X, LP)), we have

np

M Ay 1
2 Vol(dvy,) Tr[A Ds, o (A)] = Tr{A7] (1 + p>Tf[A@“hﬂ(A)]- (3.32)
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Proof Let us first compute Dgu,(A) € Herm(C"?), for general s € Z(HY(X, LP)) and
A € Herm(C"») with Tr[A] = 0. First recall from Proposition 2.17 that

B
7o f,AS = —205(A) K. (3.33)

Recall also that Il : X — Herm(C"?) denotes the coherent state projector of Definition 2.1
associated with Hy € Prod(H?(X, L?)) under the identification (2.51) induced by any s €

B(HO (X, LP)). Writing s =: {s.,}j”:l, Definition 2.2 implies that for all x € X, we have

M) = ({500, sk(x»hg)"”k . (3.34)

J k=1

Then, by Definition 2.14 and Proposition 3.3, we compute

0
Dsp (A)=</ =
o x 0t k=1

d d p 0
+ </X (8> Sk)pp a‘t:O Vems>j,k=] - <5

2
= / (ATl + IIgA — 205(A) 1) dvg — — / os(A)I1g dvg
X P Jx

- (i/ US(A)dvs> Idcnp, (3.35)
pnp Jx

so that using Definition 2.1 and the fact that Tr[A] = 0, we get

ﬂp

tA 1A
esi, e sy, r  dv
t:0< J k>hgms s)

Vol(dv,iag) ) Tdon
t=0 np

LA Dagay(4)] :/ 05(A2) dvg — <1+l>/ 0s(A)? d. (3.36)
2 X pPJ Jx

On the other hand, for any & € Met(L”)™ and letting s p € BH 0(X, LP)) be orthonormal
with respect to L2(h”), by Definition 2.1, Proposition 2.7 and formula (2.30) for the quantum
channel of Definition 2.10, we have

Tr[A%] = f o5, (A%) pyv dvp,

X (3.37)

Tr[A & (A)] = / a5, (A)* ppp dvp.
X

Then, comparing formulas (3.36) and (3.37) with & € Met(L”)™ balanced with respect to
the anticanonical volume form (1.4), so that h? = hsp , and using Proposition 2.8, we get the
result. O

Consider now the setting of the previous section, so that Aut(X) is discrete and X admits
a Kihler-Einstein metric 4 € Met™ (K%). For any k € Nand p € N big enough, let sy (p) €
#(H°(X, LP)) be orthonormal bases for the L2-products L>(hY (p)) € Prod(H°(X, LP))
induced by Proposition 3.5. The key part of the proof of Theorem 1.1 is the following result,
giving a lower bound for the derivative of the moment map at the approximately balanced
bases. It is based on the asymptotics of Theorem 2.12 on the spectral gap of the quantum
channel gh,f(p) associated with h,’; (p), which allow us to bypass the difficult geometric
argument in the proofs of Donaldson [15] and Phong and Sturm [34] of the analogous result
for Example 2.4.
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Proposition 3.9 For any k, kg € N with k > ko > n + 1, there exists a constant ¢ > 0
such that for all p € N big enough, for all B € Herm(C"r) with || B|l;y < sp_k" and all
A € Herm(C"r) with Tr[A] = 0, we have

np

—r IAlZ. (3.38)
Vol(dv, g, (1)) i

Tr[A DeBsk(p)MU (A)] =

<o

Proof The proof consists of an approximate version of Proposition 3.8, whose proof will be
used in a crucial way. We will use the following inequality, which holds for any triple of Her-
mitian matrices A, B, G € Herm(C"») as a consequence of Cauchy—Schwarz inequality,

ITr[ABG]| < [|Alle | Bllir G llop- (3.39)

By Definition 2.1 and the fact that || I1s]|;, = |[TIs[lop = 1, this shows that for all A €
Herm(C") and all s € Z(HY(X, L)),

los(A)lgo < lAll,»  and  |os(A%)|g0 < [|A]Z. (3.40)

Using Proposition 2.18, the submultiplicativity of the operator norm and the fact that || B||op <
||B||; for all B € Herm(C"), the inequality (3.39) also shows that that for any ¢ > 0, there
is a constant C > 0 such that for all B € Herm(C"») with || B|l;» < ep~ 0 and all p € N,
we have

|0,55(A)? — 05(A) |0 < 2| All;r 0s(e*B) T og(eB AeP) — 05(A)

0 (3.41)
< Cp A7,
and in the same way,
A2) — 6o (AD) o — 2By—1 B A2,BY _ 5 (A2
loeBg (A7) — 0s(A%) |0 = |0s(e”7) ™ os(e” Ae”) — 05(A7) 0 (3.42)
< Cp YAl
Consider the operator S, acting on A € Herm(C"») by
1
Sy(A) = A — (1 + ;> ) (). (3.43)

Assume now k > ko > n, and recall that sg(p) € B(HO(X, LP)) is an orthonormal basis
for L(h (p)), for all p € N big enough. Then, plugging s = eZs;(p) into (3.36) and
comparing with (3.37) for hi(p), we can use Proposition 3.5 and Lemma 3.7 together with
(3.40), (3.41) and (2.35), to get a constant C > 0 such that for all p € N big enough, for all
B € Herm(C"») with || B|;, < C~'p~%0 and for all A € Herm(C"») with Tr[A] = 0, we
have

np
——F  Tr[A D, A)] —Tr[AS,(A
2 Vol(dvesg, ) T[A Dy, () 1v(A)] = Tr[A S, (A)]
n dv, s
=< A2 p e’si(p) _ A2 d
_-/;( O'eBsk(p)( )VOI(dUeBSk(p)) thk(p) Usk(p)( )phkp(p) Vi (p)
n dv,s
A)? P eBse(p) A2 d

+/}; UeBsk(P)( ) Vo](d\)eBsk(p)) dvhk(p) O'Sk(p)( ) ph;:’(p) Vi (p)

< Cp"MYAl7. )
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Recall that for any & € Met™ (L), we write A1 (k) > O for the first positive eigenvalue of
the Riemannian Laplacian of (X, ghT Xy acting on ¢°° (X, C). Then, formula (3.8) shows that
there exists a constant C > 0 such that for all p € N, we have

[A1(hi(p)) — A1 (hoo)| = C/p. (3.45)

Using the uniformity in Theorem 2.12, this gives a constant C > 0 such that for all p € N,

1 A (hoo) _
2 1 2 2
Tr[A Sp(A)] = Al — (1 + ;) <1 - T;o +Cp ) Al

Mhoo) — 41 _ 1
> (;’%—Cp 2<1+7)) A%
Tp p

(3.46)

Using Theorem 3.2 and assuming k > kg > n + 1, we get from the estimates (3.44) and
(3.46) a constant ¢ > 0 such that for all p € N big enough, for all B € Herm(C"») with
IBll;» < ep—*0 and all A € Herm(C") with Tr[A] = 0, we have

}’lp e 5
Voldy . TAD INERAVIES 347
Vol@v,ry ) A Detsyipy (AN 2 ZlA T (3.47)

This gives the result. o

In the following result, we show that the moment map Lemma of Donaldson in
[15,Prop. 17] is valid in our setting, although we do not exhibit any associated Kihler struc-
ture.

Proposition 3.10 Fix p € N and assume that there exist s € BHX,LP)) and A, § > 0
such that

(D Alpv@ e <63
(2) ATr[A D, sgp1n(A)] > ||A||t2r forall A € Herm(C"r) such that Tr[A] = Oand all B €
Herm(C"™r) such that || B||; < 6.

Then, there exists B € Herm(C"?) with ||B|l; < 8 and ., (eBs) = 0.

Proof Firstnote that for any unitary endomorphism U € U (np) and any s € A(H 0(x, LPy),
Definition 2.14 shows that u, (Us) = Upu,(s) U*. Thus, for any A, B € Herm(C"»), one
computes that

0
Tr[A Dyspty (A)] = —| _ TrlA [y (e Us)] (3.48)

= Tr[U*AU Dsu,(U*AU)].
In particular, assumption (2) is equivalent to

(2") ATr[A Dy, gy (A)] > ||A||12r for all A € Herm(C"?) such that Tr[A] = 0, allU €
U(np) and all B € Herm(C"?) such that || B||;, < 6.

Let us now consider p, : Z(H°(X, LP)) — Herm(C"?) as a vector field on Z(H(X, L))
via the identification (2.49). Let s € Z(H°(X, L)) be such that assumptions (1) and (2) are
satisfied, and let's, € Z(HY(X, L?)) for all 1 > 0 be the solution of the ODE

3
[ 28 = —py(s;) forall ¢>0, (3.49)

So = S.

If u,(s) = 0, then the result is trivially satisfied, so that we can assume wu,(s) # 0, in
which case 1, (s;) # 0 for all + > 0. Let p > 0 be such that there exist U, € U(n,) and
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B; € Herm(C"») with || B||;» < & suchthats, = U,ePrsforallt e [0, to]. Using assumption
(2") and recalling that Tr[u,,] = 0 by Proposition 2.16, for all z € [0, #y] we have

0
- xgnuu(sz)n?, = 20 Tr[ty (8¢) Dy, pv (o ()1 = 21120 (1) 117, (3.50)

By derivation of the square, this implies Aa% lew (S ller < —lw(se) s for all ¢ € [0, to],
so that using Gronwall’s lemma with initial condition (1) and the fact that p,(s;) =
Uy, (eBis) U, we get

—t/n

B, 8 —t/x
v @™ ) llir = NSO ller < e i (S0)llir < e (3.51)

Let us now consider Prod(H®(X, LP)) asa symmetric space via the quotient map (2.52), and
recall that the geodesics are the image of the 1-parameter groups of the action of GL(C"»)
as in formula (2.53). Then, by Eq. (3.49), the Riemannian length L(ty) > 0 of the path
{t = Hs,}rejo.1p) C Prod(H(X, LP)) satisfies

fo k) +00 N
L(to)z/ lpew (8o dt < X/ et dr = 5. (3.52)
0 0

This means that there exists ¢ > 0 such that all points of {t — Hs, };¢[0,1y+¢] can be joined
by a geodesic of length strictly less than §, i.e., that for each ¢ € [0, 7o + ¢], there exists
B; € Herm(C"») with || B;||;; < & such that Hs, = H,s, so that there exists U; € U(n))
such that s, = U,eBrs. Thus, I := {to > 0| L(tp) < 8} is non-empty, open and closed in
[0, +oc[, so that I = [0, +o0[. In particular, the path {t = Hs,};~0 has total Riemannian
length strictly less than 8, so that it converges to a limit point H, s, € Prod(H’(X, L)) by
completeness, with By, € Herm(C"?) satisfying || Bso ||z < §. Finally, inequality (3.51) for
all + > 0 implies

iy (@®=9)llsr = lim [y (eBs)];r = 0. (3.53)
t——+400

This gives the result. O
With all these prerequisites in hand, we can finally give the proof of Theorem 1.1.

Proof of Theorem 1.1 First note by Proposition 2.7 and formula (3.34) that for any k € N and
p € N big enough, the value of the moment map of Definition 2.14 at the orthonormal basis
sk(p) € #(H(X, LP)) for L2(hf:(p)) satisfies the following formula ,

_ (o) =/ My, (p) ( D) —php(,)) vy (3.54)
Vol(dvs, (p)) X Vol(@vs, () dvipy Y

Thus, using Proposition 3.5 and Lemma 3.7 together with the estimate (2.35) for the dimen-
sion and the fact that ||T1sl;» = 1 foralls € Z(H°(X, LP)), we get a constant C > 0 such
that for all p € N, we have

np
Vol(dvs, ) Nl ew (8K (P Mler
d (3.55)
np Vsi(p)
< VOl(dvhk(p)) -

opr nfk.
Vol(dvs,(p)) dviy (p) ) ©0

<Cp
Thus, taking kyp > n + 1, we can then choose k > ko + n + 1, and Proposition 3.9 shows
that Proposition 3.10 applies for p € N big enough and s = si(p), with

c
=P " and s = = prtik, (3.56)
& Vol(dvg,(p)) &
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This gives a sequence of Hermitian endomorphisms B, € Herm(C"?), p € N, with || B, |l;, <
sp_ko such that ., (eBrsy(p)) = 0 forall p € N big enough. By Proposition 2.15, the
Hermitian metrics ), := hf Bs,(p) € Met ™ (L?) are then anticanonically balanced for all

p € N big enough, and the associated Kéhler forms satisfy
Wh, = P WeBg (p)> 3.57)

where w,zg, () is induced by £,z (). If we also chose kg > n + 1 + m/2 for some m € N,
Lemma 3.6 shows the ¢ -convergence (1.6) to the Kéhler—Einstein form weso. This estab-
lishes Theorem 1.1. m]

4 Donaldson’s iterations toward anticanonically balanced metrics

In this section, we consider a Fano manifold X, together with its anticanonical line bundle
L := K% and the associated anticanonical volume map (1.4). We will apply Theorem 1.1 to
establish the exponential convergence of the associated Donaldson’s iterations and compute
the optimal rate of convergence.

4.1 Donaldson map

Our goal is to study the following dynamical system on the space Prod(H%(X, L?)) of
Hermitian inner products on H 0 (X, LP). To this end, recall Definition 2.2 for the Fubini—
Study map FS : Prod(H%(X, L?)) — Met™(LP).

Definition 4.1 For any p € N big enough, the associated anticanonical Donaldson map is
defined by

7, = Hilb, o FS : Prod(H°(X, L?)) —> Prod(H"(X, L")), @.1)

where Hilb, : Met™ (LP) — Prod(H%(X, LP)) is the anticanonical Hilbert map defined by
(1.3) using the anticanonical volume form (1.4).

By construction, the balanced products of Definition 2.3 coincide with the fixed points

of the Donaldson map. Using formula (2.9) for the Fubini—Study metric and writing h';i =
FS(H) € Met*(L?) forany H € Prod(HO(X, L)), we get the explicit description

__ " ..
T(H) = Voldvn,) /X(HH(x) ) E dvgy (1), (4.2)

For any #” € Met(LP) and H € Prod(H®(X, L")), consider the natural identifications

(X, R) —> Tpr Mett(LP)

(4.3)
f — 2 el nP,
ot 1t=0
and
L(HY(X,LP), H) —> Ty Prod(H(X, L))
| 5 0 (4.4)
—> E —o (e, Vy.
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In the notations of Sect. 2.3, if s € B(H(X, LP)) is such that H = Hg, then for any

A e Z(HX, LP), H) we have
Hyug=H(e ., ). (4.5)

In particular, the identification (4.4) differs from the identification (2.51) induced by the
quotient map (2.52) by a factor of —2.
Recall now Definitions 2.1 and 2.9.

Proposition 4.2 The derivative of the anticanonical Hilbert map at h? € Met™ (L?) is given
by
Dy Hilb, : (X, R) — 2(H(X, L), Hilb, (h?)),

1 vy (4.6)
f — (1 + ;) Typr (f) — (/ f Vol(d‘%)) .

The derivative of the Fubini-Study map at H € Prod(H*(X, LP)) is given by

Dy FS: Z(H(X, LP), H) — €>°(X, R),

.7
A — og(A).
Proof Forany f € €°°(X,R) and ¢ € R, set
hP = el hP e Met™ (LP). (4.8)

Then, for any s1, 52 € HO(X, LP), using Proposition 3.3 and the fact that 7;,» (1) = Id by
formula (2.27), we compute

9
ot ’t:()(sl’ 52)Hilb, (7
= Vol(dv) 0, §1, 8 V S kY —
Vol(dvy) \Jy 91 li=o™ 17200 Hh 1 s2)he
9 np
o Valido ) ) d
* (E)t 1=0 Vol (dvy, )) / {s1,52)p dvi (4.9)

__ " ( 1 / dvy )( -
o Vol(dl}hp) X f f f VOl(dl)h) S1,82)hp AVy

_n7p< 1_|_l Tir (f) — / dvp >
~ Vol(dvyr) <( P) s / Vf)l(dvh))m’s2 L2y

Using formula (2.24), this proves the first statement (4.6).
On the other hand, in the identifications (4.3), (4.4) and using formula (4.5), the second
statement (4.7) is a consequence of Proposition 2.17. O

Let H € Prod(H°(X, L?)) be an anticanonically balanced product, and consider the
setting of Sect. 2.2 for the anticanonically balanced metric hi, := FS(H) € Mett(LP).
Then, in particular, Definition 2.3 of a balanced product implies that £ (H 0(X, LP), H) and
£ (%)) coincide as real Hilbert spaces. Via the identification (4.4), Proposition 4.2 implies
the following formula for the derivative of the anticanonical Donaldson map at a fixed point.

Corollary 4.3 The differential of the anticanonical Donaldson map at a fixed point H €
Prod(H® (X, LP)) is given by the following formula, for all A € Z(y),

1 1 Tr[A]
) Sht, (A) — ——1dr
p n

I

Dy Fy(A) = <1 (4.10)

P
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Proof Definition 2.3 of a balanced product implies that H coincides with LZ(h )uptoa
multiplicative constant, and Definition 2.1 then shows that the Berezin symbol maps o> nt)

and oy coincide. Using Propositions 2.7 and 2.8 for the balanced metric h’;{, we then get for
all A € (1),

np
_ A)d = Tr[A]. 4.11
Vol(dvs,) (/X on(A) VhH) r[A] 4.11)
Then, using Definitions 2.10 and 4.1, the result follows from Proposition 4.2 and formula
“4.7). O

4.2 Energy functional

In this section, we consider a Fano manifold X with Aut(X) is discrete, and show that if
the anticanonical Donaldson map of Definition 4.1 admits a fixed point, then its iterations
converge to this fixed point, which is unique up to a multiplicative constant. The results in
this section are essentially a combination of results of Berman [3] and Berman et al. [4]. We
gather them here as they play a central role in the proof of Theorem 1.2 given in the next
section.

Recall that we write L := K 3"( for the anticanonical line bundle of X, and let us introduce
the energy functional E : Met* (L?) — R defined for any 77 € Met™ (LP) by

E(h?) := — log Vol(dvy). (4.12)

It has been considered in [4,§6.3] as a replacement of the Aubin—Yau functional in the
anticanonical setting. Its key property in our context is the following Lemma of Berman
[3,Lemma 2.6], for which we give a proof as it is quite elementary.

Lemma4.4 For any h? € Met™ (L?), we have
E(FS o Hilb, (h?)) < E(h?). (4.13)

Proof Let us first show that E : MetT(L”) — R is concave along paths in Met™ (L?) of the
form

t— hP:=ehP 1t eR, (4.14)

for any f € €°°(X, R) such that e~/ h” is positive. By Proposition 3.3, for any 7 € R we
have

Kl o dvp,
E(h )= f fVol(dvhl (4.15)

so that using the Cauchy—Schwarz inequality, we get

d d
E(h”) / U —/ Sy, (4.16)
Vol(dvy,) x © Vol(dvy,)
Recall the setting of Sect. 2.2 for ¥ € Met ™ (L”), and let us take
1 Vol(dvy,)
f e log _— php N (417)
p np
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so that hf = FS o Hilb, (h”) by Proposition 2.7, and consider the smooth function ® : R —
R defined for any ¢ € R by

o Py Py dvy
®(t) := E(h)) — E(hD) I/X fVol(dvh)' (4.18)

Then, this function satisfies f(0) = f’(0) = 0 by formula (4.15) and is concave by formula
(4.16), so that in particular f(1) < 0 and

E(FS o Hilb (hP))_E(hP)</ fdi (4.19)
Y = Jx 7 Vol(dvy)~ '
Now using formula (2.35) for the dimension, the concavity of the logarithm implies
dvy, 1 1
— < —1 — d =0. 4.20
! i =5 Og(np oo ”h> @2
This shows the result. O

From now on, we fix a base point Hy € Prod(H°(X, L)), and identify any H €
Prod(H%(X, L?)) with a Hermitian endomorphism H € Z(H®(X, L?), Hy) via the for-
mula

H = Hy(H-, ). 4.21)

Recall that Prod(H°(X, L?)) is endowed with a natural structure of a symmetric space via
the quotient map (2.52), with geodesics given by formula (2.53). The following result is a
consequence of the results of [6, 7] on positivity of direct images.

Proposition 4.5 [4,Lemma 7.2] Assume that Aut(X) is discrete. Then, the functional V :
Prod(H%(X, L?)) — R defined for all H € Prod(H°(X, LP)) by
1 logdet H
W(H) = E(FS(H)) + e 4.22)
p np
is convex along geodesics of Prod(H®(X, LP)), and strictly convex when the geodesic is not
generated by a multiple of the identity.

The fundamental role of the energy functional (4.22) in finding anticanonically balanced
products comes from the following identity, which follows from Proposition 2.17 as in the
proof of Proposition 3.8 for all s € B(HY(X, LP)) and all A € Herm(C"»),

W(H,ag) = Trlu,(s) Al (4.23)

p Vol(dvg)
By Proposition 2.15, this implies in particular that critical points of W coincide with anticanon-
ically balanced products, and Proposition 4.5 shows that they are unique up to a multiplicative
constant. This also implies the following result on the iterations of Donaldson’s map, due to
Berman [3,Th. 4.14]. It essentially follows the proof of Donaldson [17,Prop. 4], and we give
it here as it will be used in the next section.

dr li=0

Proposition 4.6 Assume that Aut(X) is discrete, and let p € N be such that an anti-
canonically balanced product exists. Then, for any Hy € Prod(H®(X, LP)), there exists
an anticanonically balanced product H € Prod(H 0(X, LP)) such that

k—+00

Tk(Hy) —= H. (4.24)
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Proof Let us first show that for any H € Prod(H°(X, L?)), we have ¥ (7, (H)) < W(H).
By formula (4.2) and via the identification (4.21), as I1y is rank-1 we have

MEAGILE . Te[My]dvy, = 1 425
r[ n, ]_Vol(dvhH)/X rMg]dvn, =1, (4.25)

so that by concavity of the logarithm,
logdet 7,(H) logdetH logdet (Z,(HYH™")
np np - np

Fy(H)H™! ] _o,
np

(4.26)
<logTr |:

with equality if and only if Z,(H) = H. On the other hand, using Lemma 4.4 we get
E(Z,(FS(H))) < E(FS(H)), so that ¥ (7, (H)) < W(H), for all H € Prod(H’(X, L?)).

Now by Proposition 4.5 and identity (4.23), the existence of a balanced product implies
that the functional W is bounded from below, so that in particular, the decreasing sequence
{W(7] (Hp))}ren converges to its lower bound. As the Donaldson map .7, decreases both
terms of (4.22) separately, this implies that the decreasing sequence {logdet(.7; (Hy))}reN
is also bounded from below, so that {det(.7]] (Hp))},en is bounded in ]O, 4+-oo[ and

1
—logdet (7™ (Hy) 7} (Hp)™') — 0 as r — +oo. (4.27)
n

Again by Proposition 4.5 and identity (4.23), the existence of a balanced product implies
that the functional W is proper over any subset of Prod(H 0(X, LP)) with bounded deter-
minant. We thus get that the sequence {.7, (Hp)},en admits an accumulation point H, €
Prod(H°(X, LP?)). On the other hand, the equality case in formula (4.25) and formula (4.27)
implies

TN (Hy) T (Hp) ™' —> 1d, as r — +00 . (4.28)

We thus get that H € Prod(H°(X, LP)) is the unique accumulation point, and satisfies
y(H),) = H. This concludes the proof. O

4.3 Exponential convergence of Donaldson’s iterations

This section is dedicated to the proof of Theorem 1.2. It follows the argument of the analogous
result in [24,Th. 4.4] for the constant volume map of Example 2.5.

Consider the setting of Sect. 2.2 for an anticanonically balanced metric A” € Met™ (L?),
so that H := L%(h?) € Prod(H°(X, L?)) is an anticanonically balanced product.

Recall that if H € Prod(H°(X, L?)) is an anticanonically balanced product, then we
have Z(H(X,L?), H) = & () as real Hilbert spaces for the trace norm. Write Dy .7, :
L(Hy) — L () for the differential of the Donaldson map at H in the identification (4.4).

Lemma 4.7 Let X be a Fano manifold with Aut(X) discrete admitting a polarized Kdhler—
Einstein metric, and let {H), € Prod(HO(X, LP))}pen be a sequence of anticanonically
balanced products for all p € N big enough.

Then, Dy,7, is an injective self-adjoint operator acting on £(},) satisfying
Dp,7,(1d) = 1d. Furthermore, the highest eigenvalue y1(Hp) € R of its restriction to
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the subspace of traceless matrices satisfies the following estimate as p — 00,

M —4nm s
VitHp) =1———+0(p ), (4.29)
4 p

where A1 > 0 is the first positive eigenvalue of the Riemannian Laplacian associated with
the polarized Kihler—Einstein metric acting on ¢€°°(X, C).

Proof Recall from Proposition 2.11 that the quantum channel of Definition 2.10 is a self-
adjoint operator acting on .Z’(.%¢}), so that by Corollary 4.3, the differential Dy, 7, is self-
adjoint and satisfies Dg, 7, (Id) = 1d. In particular, it preserves the orthogonal of the identity,
i.e., the space of traceless endomorphisms, and Corollary 4.3 implies that forall A € £ (.¢},)
with Tr[A] = 0, we have

1
Dy, 7(A) = (1 + ;) Ers(H,) (A). (4.30)

Then, Proposition 2.11 implies that Dy, 7}, is injective and positive as an operator acting on
L(H).

To establish formula (4.29), recall from Proposition 4.5 and identity (4.23) that if
Prod(H%(X, L?)) contains an anticanonically balanced product, then it is unique up to a
multiplicative constant. Furthermore, Definition 4.1 shows that .7, (cHp) = ¢.%,(H)) for
every ¢ > 0, so that the spectrum of Dy, 7, does not depend on the chosen anticanonically
balanced product. Using Theorem 1.1, to compute the estimate (4.29), we can then assume
that H), := Lz(h(p)) foreach p € N, where {h(p) € Met™ (L)} pen is a sequence of positive
Hermitian metrics converging to the Kiihler—Einstein metric 2o, € Mett (L). The statement
is then an immediate consequence of the uniformity in Theorem 2.12, as in the proof of
Proposition 3.9. O

Recall now that Prod(H%(X, L?)) admits a natural structure of a symmetric space via the
quotient map (2.52), and write dist(-, -) for the associated distance. Using Lemma 4.7 and the
geometric input of the previous section, we can now give the proof of Theorem 1.2 following
[24,Th.4.4].

Proof of Theorem 1.2 Fix p € N such that an anticanonically balanced product exists by
Theorem 1.1, and fix any Hp € Prod(HY(X, LP)). By Proposition 4.6, there exists an anti-
canonically balanced product H,, € Prod(H 0(X, L?)) such that

TX(Ho) — H,, ask — +oo. 4.31)

Then, up to enlarging the constant C > 0 in (1.8), we can assume that Hj belongs to any
fixed neighborhood U C Prod(H'(X, LP)) of H p. Consider H), as a base point metric as
in (4.21), so that any H € Prod(H 0(X, LP)) is identified with an Hermitian endomorphism
H e £(;) viathe formula H := H,(H-, -). Take a neighborhood U C Prod(HY(X, LP))
such that there is a diffeomorphism
U— VxI
H (4.32)
— | ———, det(H) | ,
det(H)

where I C R is a neighborhood of 1 € R and V is a neighborhood of H), =~ Id s, in the
space of positive Hermitian endomorphisms of determinant 1 acting on 7. In particular,
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the tangent space Ty, V' is naturally identified with the space of traceless endomorphisms in
Z(5)). Then, for any H € V, the map

Tv(H)
_— (4.33)
det(7, (H))
fixes H),, and its differential acts on traceless Hermitian endomorphisms in .Z'(7¢),) by
DHp % — TI'[DHp %] Id(f(%p) . (4.34)

By Lemma 4.7, it is a self-adjoint operator with eigenvalues contained in ]0, 1[C R, which
implies in particular that the map (4.33) is a local diffeomorphism around H), in V. Further-
more, by the classical Hartman—Grobman theorem, the map (4.33) is conjugate by a local
homeomorphism to its linearization at H),. In particular, taking 8, €]0, 1[ as the largest
eigenvalue of (4.33), we get a constant C > 0 such that for all k € N,

k
dist( 7y (Ho)

R k
det(7 (Ho))’ H’”) =P 39

In view of (4.32), we see that to get the exponential convergence (1.8) from (4.35), we need
to show that there is a constant C > 0 such that for all k € N, we have

‘det T*(Ho) — 1‘ < Bl (4.36)

To this end recall that the functional ¥ : Prod(H°(X, L?)) — R of Proposition 4.5 is
decreasing under iterations of .7, and invariant with respect to the action of R by multipli-
cation. By (4.35) and the differentiability of W, there exists a constant C > 0 such that for
all k € N, we have

0 < W(Z\(Hp)) — W(H),) < CB), . (4.37)

A both terms appearing in the definition (4.22) of W are decreasing by Lemma 4.4 and
formula (4.26), respectively, we deduce in particular that for all X € N big enough,

0 < log det(7 (Ho)) < CB,, . (4.38)

from which (4.36) follows. This completes the proof of the exponential convergence (1.8).
The asymptotic expansion (1.9) is then immediate consequence of Lemma 4.7, and the fact
that it is sharp follows from the fact that (4.33) is conjugate to its linearization (4.34) by a
local homeomorphism. O

Remark 4.8 Consider a general compact complex manifold X equipped with an ample line
bundle L, and consider a volume map equal to a constant value dv € .# (X) as in Example 2.5.
Then, the asymptotics of the optimal rate of convergence (1.9) for the associated Donaldson
map have been computed in [24,Th. 3.1, Rmk.4.12], and are given by the following estimate
as p —> +00
Al

4 p
where A1 > 0is the first eigenvalue of the polarized Yau metric associated with dv. Then, if X
is a Fano manifold with L := K ;} and if dv € .Z(X) is a Kdhler—Einstein volume form as in
Definition 3.1, Theorem 1.2 shows that the iterations of the Donaldson map associated with

the constant volume map converge faster than the iterations associated with the anticanonical
Donaldson map of Definition 4.1, as soon as p € Nisbig enough. This behavior was predicted

Bp=1- +0(p2), (4.39)
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numerically by Donaldson [17,§ 2.2.2]. Note that the iterations of the Donaldson map for the
constant volume map are of no practical interest to approximate Kdhler—Einstein metrics, as
one would need to know the Kéhler—Einstein volume form a priori. By contrast, in case X is
a Calabi-Yau manifold, the relevant volume form dv € .#(X) is purely determined by the
complex geometry of the manifold, and the iterations of the Donaldson map in this case can
be used to approximate numerically the polarized Ricci-flat metric.

On the other hand, the methods of this paper also apply to manifolds with L := Kx ample
and the canonical volume map of Example 2.6, giving the following estimate as p — +o00
for the rate of convergence (1.9),

Bp=1—"——+0(p?), (4.40)
p

where A1 > 0 is the first positive eigenvalue of the Kéhler—Einstein Laplacian acting on
¢ (X, C). Wethen see that the iterations associated with the canonical volume map converge
faster than both previous examples when p € Nis large enough. Note that the existence of the
Kihler—Einstein metric in this case is the easiest case of the celebrated theorem of Yau [46],
as shown by Aubin [1].

Finally, using the methods of this paper and a refined estimate on the spectral gap of the
quantum channel, it is showed in [23,Th. 1.5] that the rate of convergence of iterations for
the Liouville volume map of Example 2.4 as p — +o00 satisfies

Bp=1+0(p, (4.41)

which also confirms a prediction of Donaldson [17,§ 2.2]. Theorem 1.2 thus shows that the
convergence of the iterations of Donaldson’s map is much faster in the anticanonical case
than in the Liouville case, when p € N is taken big enough.
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