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We show that a Kähler-Ricci soliton on a Fano manifold can 
always be smoothly approximated by a sequence of relative 
anticanonically balanced metrics, also called quantized Kähler-
Ricci solitons. The proof uses a semiclassical estimate on 
the spectral gap of an equivariant Berezin transform to 
extend a strategy due to Donaldson, and can be seen as 
the quantization of a method due to Tian and Zhu, using 
quantized Futaki invariants as obstructions for quantized 
Kähler-Ricci solitons. As corollaries, we recover the uniqueness 
of Kähler-Ricci solitons up to automorphisms, and show how 
our result also applies to Kähler-Einstein Fano manifolds with 
general automorphism group.
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1. Introduction

The purpose of this paper is to use a relative extension of the notion of balanced 
metrics, first introduced by Donaldson in [13], in order to approximate Kähler-Ricci 
solitons on Fano manifolds.
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Recall that a compact complex manifold X is a Fano manifold if its anticanonical line 
bundle L := det(T (1,0)X) is ample. Thanks to a classical theorem of Kodaira, this means 
that L admits a positive Hermitian metric h ∈ Met+(L), so that its Chern curvature 
Rh ∈ Ω2(X, C) induces a Kähler form on X via the formula

ωh :=
√
−1
2π Rh . (1.1)

On the other hand, the group Aut(X) of holomorphic diffeomorphisms of X is a fi-
nite dimensional complex Lie group, inducing a complex embedding of its Lie algebra 
Lie Aut(X) into the Lie algebra C∞(X, TX) of real vector fields over X, endowed with 
the complex structure J ∈ End(TX). A Kähler form ωh ∈ Ω2(X, R) is called a Kähler-
Ricci soliton with respect to ξ ∈ Lie Aut(X) if it satisfies LJξωh = 0 and

Ric(ωh) − ωh = Lξ ωh , (1.2)

where Ric(ωh) ∈ Ω2(X, R) denotes the Ricci form of ωh, and Lη denotes the Lie derivative 
along η ∈ Lie Aut(X). This definition coincides with the definition of Tian and Zhu in 
[43]. In the case ξ = 0, we recover the notion of a Kähler-Einstein metric.

Fix now p ∈ N∗, and consider the space H0(X, Lp) of holomorphic sections of the p-th 
tensor power Lp := L⊗p. Let hp ∈ Met+(Lp) be a positive Hermitian metric on Lp, and 
consider the induced L2-Hermitian inner product L2(hp) defined on s1, s2 ∈ H0(X, Lp)
by

〈s1, s2〉L2(hp) :=
∫
X

〈s1(x), s2(x)〉hp dνh(x) , (1.3)

where dνh is the anticanonical volume form associated with the induced metric h ∈
Met+(L) on L, defined over any contractible open subset U ⊂ X by the formula

dνh :=
√
−1n2 θ ∧ θ̄

|θ|2h−1
, (1.4)

independent of θ ∈ C∞(U, det(T (1,0)∗X)) non-vanishing, where h−1 ∈ Met(L∗) denotes 
the dual Hermitian metric on L∗ = det(T (1,0)∗X). On the other hand, by definition 
of L as an ample line bundle, it induces an embedding of X into the projective space 
of hyperplanes in H0(X, Lp) for any p ∈ N∗ large enough, called Kodaira embedding. 
Given a Hermitian inner product H on H0(X, Lp), we can then endow Lp with the 
positive Hermitian metric FS(H) ∈ Met+(Lp) induced by the Fubini-Study metric. A 
positive Hermitian metric hp ∈ Met+(Lp) is called anticanonically balanced relative to
ξ ∈ Lie Aut(X) if it satisfies LJξωhp = 0 and

ωhp = φ∗
ξ/2p ωFS(L2(hp)) , (1.5)
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where φη ∈ Aut(X) exponentiates η ∈ Lie Aut(X). In the case ξ = 0, we recover the 
usual notion of an anticanonically balanced metrics, introduced by Donaldson in [14, 
§2.2.2].

The main result of this paper is the following Theorem, which we prove in Section 6. 
For any m ∈ N, let | · |Cm be a fixed Cm-norm on Ω2(X, R), and write Aut0(X) for the 
identity component of Aut(X).

Theorem 1.1. Let ωh∞ ∈ Ω2(X, R) be a Kähler-Ricci soliton with respect to ξ∞ ∈
Lie Aut(X). Then for any m ∈ N, there exists Cm > 0 and anticanonically balanced 
metrics hp ∈ Met+(Lp) relative to ξp ∈ Lie Aut(X) for all p ∈ N∗ big enough such that

ξp
p→+∞−−−−−→ ξ∞ and

∣∣∣∣ 1pωhp − ωh∞

∣∣∣∣
Cm

� Cm

p
. (1.6)

Furthermore, if h̃p ∈ Met+(Lp) is another anticanonically balanced metric relative to 
ξ̃p ∈ Lie Aut(X) for some p ∈ N∗ big enough, then there exists φ ∈ Aut0(X) such that 
φ∗ξ̃p = ξp and φ∗ωh̃p = ωhp .

Theorem 1.1 answers a question of Donaldson in [14, §2.2.2]. This question has also 
been studied in previous works of Berman and Witt Nyström in [3, Th. 1.7] and Taka-
hashi in [41, Th. 1.2], where the convergence in Theorem 1.1 is established in the weak 
sense of currents, and under the assumption that a modified Ding functional over the 
infinite dimensional space Met+(L) is coercive modulo Aut0(X). By contrast, our proof 
closely follows the finite dimensional method of Donaldson in [13], and relies on methods 
of Berezin-Toeplitz quantization. We hope that our approach can help to shed light on the 
different notions of stability in this context, following the work of Saito and Takahashi 
in [38]. Relative anticanonically balanced metrics were introduced in [3, §4.2.2] under 
the name of quantized Kähler-Ricci solitons.

As a straightforward consequence of Theorem 1.1, we get an alternative proof of the 
following result of Tian and Zhu in [43, Th. 1.1] and [44, Th. 3.2], which does not rely 
on solving a Monge-Ampère equation.

Corollary 1.2. Let ωh, ωh̃ ∈ Ω2(X, R) be Kähler-Ricci solitons with respect to ξ, ξ̃ ∈
Lie Aut(X) respectively. Then there exists φ ∈ Aut0(X) such that φ∗ξ̃ = ξ and φ∗ωh̃ =
ωh.

Let us point out that the coercivity assumption used in the proofs of [3, Th. 1.7] and 
[41, Th. 1.2] was shown to be a consequence of the existence of a Kähler-Ricci soliton by 
Darvas and Rubinstein in [11, Th. 8.1], but this last result actually uses Corollary 1.2, 
so that this does not lead to an alternative proof.

The proof of Theorem 1.1 follows the general strategy of Donaldson in [13], who 
established an analogue of Theorem 1.1 in the case of Aut(X) discrete, showing that 
a polarized Kähler metric of constant scalar curvature can always be approximated by 
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a sequence of balanced metrics, defined as in (1.5) for ξ = 0 using the usual Liouville 
form instead of the anticanonical volume form (1.4) in the L2-Hermitian product (1.3). 
Specifically, our Proposition 6.2 uses Donaldson’s method of constructing approximately 
balanced metrics via the asymptotic expansion of the Bergman kernel along the diagonal, 
which we recall in Theorem 2.9, and our Proposition 6.7 is a straightforward adaptation 
of a fundamental Lemma of Donaldson on the convergence of the gradient flow of the 
norm squared of the associated moment map close to a zero.

The main difficulty lies instead in the most delicate part of Donaldson’s strategy, 
given in [13, §3.2] in order to establish the key estimate [13, Cor. 22]. This part of the 
proof gives an estimate from below of the derivative of the associated moment map, 
and has already been improved and clarified by Phong and Sturm in [34, Th. 2]. In the 
situation of [13,34], the derivative of the moment map has a natural geometric interpre-
tation, and this gives a natural approach to estimate the lower bound. Unfortunately, 
this geometric interpretation does not carry directly to the anticanonical case considered 
in Theorem 1.1. This difficulty was overcome only recently by Takahashi in [42, Th. 1.3], 
who established Theorem 1.1 in the case of Aut(X) discrete. The further extension of 
this geometric interpretation to the case of general Aut(X) is an interesting problem, 
but this has not been achieved yet.

The main novelty of our method is to replace this geometric interpretation by the 
use of the asymptotics of the spectral gap of the Berezin transform, which were first 
established in [22, Th. 3.1] and which we extend to the equivariant case in Theorem 5.9. 
These asymptotics are used in a crucial way in Section 6.2 to obtain the necessary 
estimate from below of the derivative of the appropriate moment map in this context. 
More precisely, we relate in Proposition 6.4 the derivative of the moment map with the 
equivariant Berezin-Toeplitz quantum channel of Definition 5.3, and we then use our 
asymptotics of the spectral gap to give an estimate of the Berezin-Toeplitz quantum 
channel in Theorem 6.5. As shown in Corollary 6.6, this produces the desired lower 
bound, and shows as a by-product that our estimate is optimal. This extends the strategy 
used in [21] to establish Theorem 1.1 in the case of Aut(X) discrete, and allows to bypass 
the geometric interpretation mentionned above, which has not yet been worked out in 
the case of Kähler-Ricci solitons. Note on the other hand that the asymptotics of the 
spectral gap are based on the asymptotic expansion of the Berezin transform recalled 
in Theorem 2.14, which is in turn a consequence of the asymptotic expansion of the 
Bergman kernel outside the diagonal. Our approach thus gives a unified way, entirely 
based on Berezin-Toeplitz quantization, to treat both the construction of approximately 
balanced metrics and the lower bound of the derivative of the moment map, instead of 
using an additional delicate geometric interpretation for the later.

The advantage of our method of proof of Theorem 1.1 is that it can be adapted in a 
systematic way to various choices of a volume form in the Hilbert product (1.3), lead-
ing to various different notions of balanced metrics. In [21, §2], we described a general 
set-up in which our method can be applied, which includes the original notion of bal-
anced metrics of [13], but also the ν-balanced metrics on Calabi-Yau manifolds and the 
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canonically balanced metrics on manifolds with ample canonical line bundle, introduced 
by Donaldson in [14], as well as the notion of twisted balanced metrics studied by Keller 
in [25] and Dervan in [12, §2.2]. It can also be extended to the case of balanced metrics 
over vector bundles, following Wang in [46], and to the case of coupled Kähler-Einstein 
metrics as in [42]. In all these cases, a new geometric interpretation as in [34] was needed 
to adapt the proof of [13] successfully. By contrast, our proof gives a general method to 
deal with this key step, using the asymptotics of the spectral gap of the corresponding 
Berezin transform, as given in Section 5 following the strategy described in [22, §3].

In Section 3, we study the quantization of the action of the automorphism group to 
establish a quantized counterpart of the method of Tian and Zhu in [44]. Namely, we 
show that the holomorphic vector fields ξp ∈ Lie Aut(X) of Theorem 1.1 are determined 
a priori for all p ∈ N∗, regardless of the existence of a relative balanced metric. As a 
first step, we show in Corollary 3.4 that for any p ∈ N∗ large enough, there exists a 
unique vector field ξ ∈ Lie Aut(X) such that the associated quantized Futaki invariant
Futξp : Lie Aut(X) → C vanishes. Following Berman and Witt Nyström in [3, §4.1.1], it 
is defined for any η ∈ Lie Aut(X) by the formula

Futξp(η) := Tr
[
Lηe

Lξ/p
]
, (1.7)

where Lη ∈ End(H0(X, Lp)) denotes the natural action of η on the holomorphic sections 
of the p-th tensor power of the anticanonical line bundle det(T (1,0)X). As a second 
step, we show in Proposition 4.7 that if there exists an anticanonically balanced metric 
hp ∈ Met+(Lp) relative to ξ ∈ Lie Aut(X), then the associated quantized Futaki invariant 
Futξp : Lie Aut(X) → C vanishes identically. This can be seen as the quantization of 
Proposition 2.5, which is due to Tian and Zhu in [44, Prop. 3.1], showing that the vector 
field ξ∞ ∈ Lie Aut(X) of Theorem 1.1 is determined a priori as the unique holomorphic 
vector field for which the associated modified Futaki invariant vanishes, regardless of 
the existence of a Kähler-Ricci soliton. This characterization of the vector fields ξp for 
all p ∈ N∗ plays a crucial role in our proof of Theorem 1.1, and has no analogue in 
Donaldson’s approach in [13], since it assumes Aut(X) discrete. In particular, we show 
in Corollary 3.4 that the vector fields ξp admit an asymptotic expansion as p → +∞
with highest order coefficient equal to ξ∞, which shows the first identity of (1.6) and is 
used in a crucial way for the construction in Proposition 6.2 of approximately balanced 
metrics.

As remarked in [3, Rmk. 4.8], it is a consequence of the equivariant Riemman-Roch 
formula that the vanishing of the quantized Futaki invariants (1.7) relative to ξ = 0 for 
all p ∈ N∗ big enough is equivalent to the vanishing of all higher order Futaki invariants
[17] of X. We thus recover the fact, first established by Saito and Takahashi in [38, 
Lem. 3.2], that the higher order Futaki invariants are an obstruction for the existence 
of anticanonically balanced metrics in the usual sense, for all p ∈ N∗ big enough. On 
the other hand, Ono, Sano and Yotsutani exhibit in [33, Th. 1.5] an example of a toric 
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Kähler-Einstein Fano manifold with non-vanishing higher order Futaki invariants. This 
example thus implies the following corollary of Theorem 1.1.

Corollary 1.3. There is a Fano manifold X with Kähler-Einstein metric ωh∞ ∈ Ω2(X, R)
such that the anticanonically balanced metrics hp ∈ Met+(Lp) relative to ξp ∈ Lie Aut(X)
of Theorem 1.1 satisfy ξp 
= 0 for all p ∈ N∗ big enough.

In particular, we recover the fact from [38, Ex. 5.6] that the toric example of [33] does 
not admit any anticanonically balanced metric in the usual sense, for all p ∈ N∗ big 
enough. This was also established in [41, Cor. 1.1] in the sense of currents and under 
a coercivity assumption on the Ding functional. Corollary 1.3 illustrates the fact that 
Theorem 1.1 is already interesting in the case of Kähler-Einstein metrics. In fact, it 
is shown in [2,21] that a Kähler-Einstein metric on a Fano manifold X with Aut(X)
discrete can always be approximated by anticanonically balanced metrics. Corollary 1.3
then shows that the assumption of Aut(X) discrete is necessary for such a result to hold 
and that Theorem 1.1 extends this result using relative anticanonically balanced metrics.

In [37], Rubinstein, Tian and Zhang introduce a notion of anticanonically balanced 
metrics depending on a parameter δ > 0, which coincides with the usual notion of an 
anticanonically balanced metric when δ = 1. In [37, Prop. 5.10], they show that these 
balanced metrics with δ < 1 can be used to approximate Kähler-Einstein metrics on Fano 
manifolds with general Aut(X) as δ → 1, with convergence in the sense of currents. 
In the same way as in Theorem 1.1, our method readily extends to establish smooth 
convergence. On the other hand, our notion of relative anticanonically balanced metric 
coincides with the quantized Kähler-Ricci solitons of [3], where the more general notion 
of a Kähler-Ricci g-soliton is considered. Although, we restrict to usual Kähler-Ricci 
solitons for simplicity, our proof extends to this more general case without any difficulty.

A relative version of balanced metrics has first been introduced by Mabuchi in [30] to 
study extremal Kähler metrics, and can be seen as the relative version of constant scalar 
curvature metrics in the case when Aut(X) is not discrete. Instead, the notion of relative 
anticanonically balanced metrics used in this paper is an analogue of the relative balanced 
metrics introduced by Sano and Tipler in [39], defined as in (1.5) with the anticanonical 
volume form (1.4) replaced by the usual Liouville form in the L2-Hermitian product (1.3). 
Theorem 1.1 is then an anticanonical version of [39, Th. 1.1], where the extremal metric 
is replaced by a Kähler-Ricci soliton, and Propositions 3.6 and 6.2 were inspired by [39, 
Lem. 4.5, Th. 5.5]. Closely related notions of relative balanced metrics as quantizations 
of extremal Kähler metrics have also been introduced by Hashimoto in [20], Mabuchi 
in [31] and Seyyedali in [40]. All these works establish an analogue of Theorem 1.1 for 
extremal metrics, extending the geometric interpretation of [13,34] for the lower bound 
of the moment map in their respective relative settings. We refer to [20, §6] for a detailed 
comparison between these different notions. We only point out here that the approach 
of [20] is a quantization of the fact that extremal Kähler metrics are critical points of 
the Calabi functional. In particular, this approach does not extend to our case, since 
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Kähler-Ricci solitons are not critical points of the anticanonical analogue of the Calabi 
functional, which is the Ding functional.

The theory of Berezin-Toeplitz quantization was first developed by Bordemann, Mein-
renken and Schlichenmaier in [6], using the work of Boutet de Monvel and Sjöstrand on 
the Szegö kernel in [8] and the theory of Toeplitz structures of Boutet de Monvel and 
Guillemin in [7]. This paper is based instead on the theory of Ma and Marinescu in 
[28], using the off-diagonal asymptotic expansion of the Bergman kernel established by 
Dai, Liu and Ma in [10, Th. 4.18’]. A comprehensive introduction for this theory can be 
found in [27]. The point of view of quantum measurement theory on Berezin-Toeplitz 
quantization adopted in this paper has been advocated by Polterovich in [35,36].

Acknowledgments. The author wishes to thank Pr. Xiaonan Ma for his constant support 
and Pr. Leonid Polterovich for helpful discussions. The author also wishes to thank the 
anonymous referees for useful comments and suggestions. This work was supported by 
the European Research Council Starting grant 757585.

2. Setting

Let X be a compact complex manifold with complex structure J ∈ End(TX), and 
write

TXC = T (1,0)X ⊕ T (0,1)X (2.1)

for the splitting of the complexification of the tangent bundle TX of X into the 
eigenspaces of J corresponding to the eigenvalues 

√
−1 and −

√
−1 respectively. For 

any vector field ξ ∈ C∞(X, TX), we will write ξ1,0, ξ1,0 ∈ C∞(X, T (1,0)X) for its com-
ponents with respect to this splitting.

In this paper, we will always assume that X is a Fano manifold, so that the space 
Met+(L) of positive Hermitian metrics on L := det(T (1,0)X) is not empty. For any 
h ∈ Met+(L) and p ∈ N∗, we write hp ∈ Met+(Lp) for the induced positive Hermitian 
metric on the p-th tensor power Lp. Conversely, any hp ∈ Met+(Lp) uniquely determines 
a positive Hermitian metric h ∈ Met+(L). We will also write Met(L) for the space of 
Hermitian metrics on L. We write C∞(X, Lp) for the space of smooth sections of Lp and 
H0(X, Lp) ⊂ C∞(X, Lp) for the subspace of holomorphic sections of Lp over X.

Recall that for any h ∈ Met+(L), the 2-form ωh ∈ Ω2(X, R) defined by formula (1.1)
is a Kähler form, meaning that the following formula defines a Riemannian metric on X,

gTX
h := ωh(·, J ·) . (2.2)

Note by definition (1.4) of the associated anticanonical volume dνh that for any f ∈
C∞(X, R), we have

dνefh = ef dνh . (2.3)
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2.1. Action of the automorphism group

Recall that the group Aut(X) of holomorphic diffeomorphisms of X is a finite di-
mensional complex Lie group, and so that there is a natural embedding LieAut(X) ⊂
C∞(X, TX). For any ξ ∈ Lie Aut(X), we write φtξ ∈ Aut(X), t ∈ R, for the flow gen-
erated by ξ ∈ Lie Aut(X). The holomorphic action of Aut(X) on X lifts naturally to 
L := det(T (1,0)X), and for any ξ ∈ Lie Aut(X), we write Lξ for the induced differential 
operator acting on a smooth section s ∈ C∞(X, L) by

Lξs := ∂

∂t

∣∣∣
t=0

φ∗
tξ s . (2.4)

Recall also that definition (1.4) of the anticanonical volume form dνh associated with 
h ∈ Met(L) does not depend on θ ∈ C∞(U, det(T (1,0)∗X)), so that for all t ∈ R,

φ∗
tξ dνh =

√
−1n2 φ∗

tξ θ ∧ φ∗
tξ θ̄

|φ∗
tξ θ|2φ∗

tξ h−1
= dνφ∗

tξh
. (2.5)

For any h ∈ Met+(L), write ∇h for the Chern connection of (L, h). We then have the 
following complex version of the Kostant formula.

Definition 2.1. For any h ∈ Met+(L), the associated holomorphy potential of ξ ∈
Lie Aut(X) is the function θh(ξ) ∈ C∞(X, C) defined for any s ∈ C∞(X, C) by the 
formula

θh(ξ) s := Lξ s−∇h
ξ s . (2.6)

In the same way as the usual Kostant formula for moment maps, formula (2.6) gives 
a well-defined scalar function θh(ξ) ∈ C∞(X, C), which via formula (1.1) for the Kähler 
form ωh ∈ Ω2(X, R) satisfies

ιξ1,0 ωh =
√
−1
2π ∂ θh(ξ) . (2.7)

Thanks to the Kodaira vanishing theorem (see for instance [1, Prop. 3.72, (1)] with 
L := KX), recall that a Fano manifold X satisfies H1(X, C) = 0. Then as explained 
in [18], a fundamental result of Fujiki [15] implies in that case that Aut0(X) is a linear 
complex algebraic group. In particular, it includes the complexification KC ⊂ Aut0(X)
of any connected compact subgroup K ⊂ Aut0(X), and we have a natural decomposition

LieKC = LieK ⊕
√
−1LieK ⊂ Lie Aut(X) . (2.8)

The following proposition gives some basic properties of the holomorphy potential.
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Proposition 2.2. For any h ∈ Met+(K∗
X) and ξ ∈ Lie Aut(X), we have

∂

∂t

∣∣∣
t=0

φ∗
tξ h = −2 Re θh(ξ)h . (2.9)

Furthermore, we have ∫
X

θh(ξ) dνh = 0 , (2.10)

and for any f ∈ C∞(X, R), we have

θefh(ξ) = θh(ξ) − df.ξ1,0 . (2.11)

Finally, if K ⊂ Aut0(X) is a compact subgroup preserving h ∈ Met+(L), then the map 
θh : LieKC → C∞(X, C) is a C-linear embedding, and for any ξ ∈

√
−1 LieK, we have 

θh(ξ) ∈ C∞(X, R).

Proof. By definition, the Chern connection ∇h of any h ∈ Met(K∗
X)+ induces the holo-

morphic structure of L, while the lift of Aut(X) to L := det(T (1,0)X) is holomorphic. 
This implies in particular that for all h ∈ Met(K∗

X)+ and all ξ ∈ Lie Aut(X), we have 
Lξ0,1 = ∇h

ξ0,1 , so that Definition 2.1 implies

θh(Jξ) =
√
−1θh(ξ) . (2.12)

By the unitarity of the Chern connection, for any s ∈ C∞(X, K∗
X), Definition 2.1 gives

∂

∂t

∣∣∣
t=0

|s|2φ∗
tξ h = Lξ〈s, s〉h − 〈Lξs, s〉h − 〈s, Lξs〉h

= 〈(∇h
ξ − Lξ)s, s〉h + 〈s, (∇h

ξ − Lξ)s〉h
= −2 Re θh(ξ) |s|2h .

(2.13)

This shows the identity (2.9). Combining formulas (2.3), (2.5) and (2.13), we then get

−2
∫
X

Re θh(ξ) dνh = ∂

∂t

∣∣∣
t=0

∫
X

φ∗
tξ dνh = 0 . (2.14)

Using the fact from formula (2.12) that Im θh(ξ) = −Re θh(Jξ), this implies the identity 
(2.10).

On the other hand, the identity (2.11) is an immediate consequence of Definition 2.1
and the fact that for any f ∈ C∞(X, R), we have

∇efh = ∇h + df.ξ1,0 . (2.15)
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Finally, if K ⊂ Aut0(X) preserves h ∈ Met+(L), then formula (2.13) implies that for 
any ξ ∈ LieK, we have 

√
−1
2π θh(ξ) ∈ C∞(X, R), while formula (2.12) implies that the 

map θh : LieKC → C∞(X, C) is C-linear for the standard complex structure on both 
spaces, and formula (2.7) shows that θh(ξ) ≡ 0 if and only if ξ = 0 by non-degeneracy 
of ωh. This concludes the proof. �
Remark 2.3. Note that if K ⊂ Aut0(X) preserves h ∈ Met+(L), Definition 2.1 for the 
map 

√
−1
2π θh : LieK → C∞(X, R) reduces to the definition of a moment map for the 

action of K on the symplectic manifold (X, ωh) via the usual Kostant formula. The 
usual condition for the moment map is recovered from the real part of formula (2.7) by 
C-linearity of θh : LieKC → C∞(X, C).

We will establish the quantized counterpart of the following result of Tian and Zhu 
in Section 3.2.

Proposition 2.4. [44, Proof of Lemma 2.2, Prop. 2.1] Let K ⊂ Aut0(X) be a given compact 
subgroup. Then there exists a strictly convex and proper functional F :

√
−1LieK → R, 

such that for any ξ ∈
√
−1 LieK and h ∈ Met+(L), we have

F (ξ) :=
∫
X

eθh(ξ) ω
n
h

n! . (2.16)

Furthermore, for any ξ ∈
√
−1 LieK, the following formula for the associated modified 

Futaki invariant Futξ :
√
−1LieK → C at η ∈

√
−1 LieK does not depend on h ∈

Met+(L)

Futξ(η) :=
∫
X

θh(η) eθh(ξ) ω
n
h

n! . (2.17)

Finally, there exists a unique ξ∞ ∈
√
−1 LieK such that Futξ∞ :

√
−1LieK → C

vanishes identically, which is given by the unique minimizer of F :
√
−1LieK → R and 

satisfies [ξ∞, η] = 0 for all η ∈ LieKC.

2.2. Kähler-Ricci solitons

A Kähler form ω ∈ Ω2(X, R) on a compact complex manifold X induces a natural 
Hermitian metric hω ∈ Met(L) on L = det(T (1,0)X), defined using the anticanonical 
volume form (1.4) by the formula

ωn

n! = dνhω
. (2.18)

The associated Ricci form is defined by the formula Ric(ω) :=
√
−1
2π Rhω

where Rhω
∈

Ω2(X, C) is the Chern curvature of the Hermitian metric hω ∈ Met(L). Using Cartan’s 
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formula and by definition (2.7) of the holomorphy potential, we see that h ∈ Met+(L)
induces a Kähler-Ricci soliton ωh ∈ Ω2(X, R) with respect to ξ ∈ Lie Aut(X) in the 
sense of formula (1.2) if and only if

Ric(ωh) = ωh +
√
−1
2π ∂∂ θh(ξ) . (2.19)

By definition of the Chern curvature, this means that there exists a constant c > 0 such 
that hωh

= ceθh(ξ)h, so that formula (2.18) shows that ωh ∈ Ω2(X, R) is a Kähler-Ricci 
soliton with respect to ξ ∈ Lie Aut(X) if and only if there is a constant c > 0 such that

dνh = ceθh(ξ)ω
n
h

n! . (2.20)

Let now ωh ∈ Ω2(X, R) be a Kähler-Ricci soliton with respect to ξ ∈ Lie Aut(X), and 
recalling formula (2.2) for the associated Riemannian metric, let K ⊂ Aut0(X) be a 
connected subgroup of holomorphic isometries of (X, gTX

h ). As LJξωh = 0 by definition, 
we get that ξ ∈

√
−1 LieK in the decomposition (2.8). The following result of Tian 

and Zhu shows that the modified Futaki invariant of Proposition 2.4 is an obstruction 
for the existence of Kähler-Ricci solitons. It will play a key role in the construction of 
approximately balanced metrics in Section 6.1.

Proposition 2.5. [44, Prop. 1.3] Let ωh ∈ Ω2(X, R) be a Kähler-Ricci soliton with respect 
to ξ ∈ Lie Aut(X), and let K ⊂ Aut0(X) be a connected subgroup of holomorphic isome-
tries of (X, gTX

h ). Then the associated modified Futaki invariant Futξ :
√
−1 LieK → C

of Proposition 2.4 vanishes identically.

For any compact subgroup K ⊂ Aut0(X), we write Met+(L)K for the space of 
K-invariant positive Hermitian metrics, and C∞(X, C)K for the space of K-invariant 
functions over X. For any h ∈ Met+(L), write Δh for the Riemannian Laplacian of 
(X, gTX

h ) acting on C∞(X, R).

Lemma 2.6. Let K ⊂ Aut0(X) be a connected compact subgroup and let T ⊂ K be the 
identity component of its center. For any h ∈ Met+(L)K and ξ ∈

√
−1LieT , the operator 

Δ(ξ)
h acting on f ∈ C∞(X, R)K by the formula

Δ(ξ)
h f := 1

4πΔh f − df.ξ1,0 , (2.21)

is positive and essentially self-adjoint with respect to the scalar product 〈·, ·〉L2(h,ξ) defined 
on f, g ∈ C∞(X, R)K by the formula

〈f, g〉L2(h,ξ) =
∫

f g eθh(ξ) ω
n
h

n! . (2.22)

X
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Furthermore, we have KerΔ(ξ)
h = C.

Proof. Fix h ∈ Met+(L)K and ξ ∈
√
−1LieT , and recall that by definition, we have 

Jξ ∈ LieT . Then all f ∈ C∞(X, R)K satisfy df.ξ = 2df.ξ1,0, and for all η ∈ LieK, we 
have [ξ, η] = 0 and [Δh, η] = 0, so that Δ(ξ)

h preserves C∞(X, R)K inside C∞(X, C). 
Using Proposition 2.2, the imaginary part of the holomorphy potential equation (2.7)
gives 2πιJξωh = −dθh(ξ). Then writing 〈·, ·〉gTX

h
for the pointwise scalar product on T ∗X

induced by the Riemannian metric (2.2) and using an integration by part from formulas 
(2.21) and (2.22), for any f, g ∈ C∞(X, C)K we get

〈Δ(ξ)
h f, g〉L2(h,ξ) =

∫
X

〈df, dg〉gTX
h

eθh(ξ) ω
n
h

n! . (2.23)

This shows that the operator Δ(ξ)
h given by formula (2.21) is essentially self-adjoint and 

positive with respect to the scalar product L2(h, ξ) on C∞(X, R)K , and that its kernel 
is reduced to the constant functions. �

Let ωh∞ ∈ Ω2(X, R) be a Kähler-Ricci soliton with respect to ξ∞ ∈ Lie Aut(X), let 
K ⊂ Aut0(X) be a connected compact subgroup of isometries of (X, gTX

h∞
) and let T ⊂ K

be the identity component of its center. Via Definition 2.1, Proposition 2.5 implies in 
particular that for any η ∈ LieK and any ξ ∈

√
−1 LieT , we have

∂

∂t

∣∣∣
t=0

φ∗
tη θh∞(ξ) = θh∞([η, ξ]) = 0 , (2.24)

so that Proposition 2.2 implies that η ∈
√
−1 LieK belongs to 

√
−1LieT if and only if 

θh∞(η) ∈ C∞(X, R)K . As explained by Futaki in [16, §4] and using formula (2.20) for 
Kähler-Ricci solitons, this implies the following result via a straightforward generaliza-
tion of a theorem of Lichnerowicz and Matsushima in [26,32] restricted to the subspace 
C∞(X, R)K ⊂ C∞(X, C). We also refer to [43, Lem. 2.2] for a self-contained proof.

Proposition 2.7. [16, Prop. 4.1] Let h∞ ∈ Met+(L) be a Kähler-Ricci soliton with respect 
to ξ∞ ∈ Lie Aut(X), let K ⊂ Aut0(X) be the identity component of the group of holo-
morphic isometries of (X, gTX

h∞
) and let T ⊂ K be the identity component of its center. 

Then the first positive eigenvalue λ1(h∞, ξ∞) > 0 of Δ(ξ∞)
h∞

acting on C∞(X, R)K as in 
Lemma 2.6 satisfies λ1(h∞, ξ∞) = 1, and the associated eigenspace satisfies

Ker
(
Δ(ξ∞)

h∞
− Id
)

= 〈θh∞(ξ) | ξ ∈
√
−1LieT 〉 . (2.25)

2.3. Berezin-Toeplitz quantization

In this Section, we fix a positive Hermitian metric h ∈ Met+(L) on the line bundle 
L := det(T (1,0)X), and use the associated volume form dνh given by formula (1.4). For 
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any p ∈ N∗, we consider the Hermitian product L2(hp) on H0(X, Lp) defined for any 
s1, s2 ∈ C∞(X, Lp) by

〈s1, s2〉L2(hp) :=
∫
X

〈s1(x), s2(x)〉hp dνh(x) . (2.26)

We write

Hp :=
(
H0(X,Lp), 〈·, ·〉L2(hp)

)
, (2.27)

for the associated Hilbert space of holomorphic sections, and set np := dim Hp. We write 
L (Hp) for the space of Hermitian endomorphisms of Hp.

By definition of L ample and for all p ∈ N∗ big enough, the Kodaira map

Kodp : X −→ P (H0(X,Lp)∗) ,

x �−→ { s ∈ H0(X,Lp) | s(x) = 0 }
(2.28)

is well-defined and an embedding. In this section, we will always implicitly assume p ∈ N∗

big enough so that this is verified.

Definition 2.8. The coherent state projector is the map

Πhp : X −→ L (Hp) (2.29)

sending x ∈ X to the orthogonal projector satisfying

Ker Πhp(x) = { s ∈ Hp | s(x) = 0 } . (2.30)

The Rawnsley function is the unique positive function ρhp ∈ C∞(X, R) defined for any 
s1, s2 ∈ Hp and x ∈ X by

ρhp(x) 〈Πhp(x)s1, s2〉L2(hp) = 〈s1(x), s2(x)〉hp . (2.31)

From the well-definition of the Kodaira map (2.28), formula (2.30) implies that Πhp(x)
is a rank-1 projector for all x ∈ X, so that for any orthonormal basis {sj}np

j=1 of Hp, 
formula (2.31) implies

ρhp = ρhp Tr[Πhp ] =
np∑
j=1

ρhp 〈Πhpsj , sj〉L2(hp) =
np∑
j=1

|sj |2hp . (2.32)

This gives the characterization of the Rawnsley function as a density of states, which 
in turn coincides with the Bergman kernel with respect to dνh along the diagonal, as 
described in [27, §4.1.9]. The following Theorem describes the semi-classical behavior of 
the Rawnsley function as p → +∞, extending [9,47].
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Theorem 2.9. [10, Th. 1.3] There exist functions b(r)h ∈ C∞(X, R) for all r ∈ N such 
that for any m, k ∈ N, there exists Cm,k > 0 such that for all p ∈ N∗ big enough,∣∣∣∣∣ ρhp − pn

k−1∑
r=0

1
pr

b
(r)
h

∣∣∣∣∣
Cm

� Cm,kp
n−k , (2.33)

where b(0)h ∈ C∞(X, R) is given by the identity b(0)h dνh = ωn
h/n!.

Furthermore, the functions b(r)h ∈ C∞(X, R) for all r ∈ N depend smoothly on h ∈
Met+(L) and its successive derivatives, and for each m, k ∈ N, there exists l ∈ N such 
that the constant Cm,k > 0 can be chosen uniformly for h ∈ Met+(L) in a bounded subset 
in C l-norm.

The concepts introduced in Definition 2.8 induce a coherent state quantization, de-
scribed via the following fundamental tools.

Definition 2.10. For any p ∈ N∗, the Berezin-Toeplitz quantization map is the linear map 
Thp : C∞(X, R) → L (Hp) defined for any f ∈ C∞(X, R) by the formula

Thp(f) :=
∫
X

f(x) Πhp(x) ρhp(x) dνh(x) . (2.34)

The Berezin symbol is the linear map σhp : L (Hp) → C∞(X, R) defined for any A ∈
L (Hp) and x ∈ X by the formula

σhp(A)(x) := Tr[Πhp(x)A] . (2.35)

Using formula (2.31), we get for any f ∈ C∞(X, R) and any s1, s2 ∈ Hp,

〈Thp(f)s1, s2〉L2(hp) =
∫
X

f(x) 〈s1(x), s2(x)〉hp dνh(x) , (2.36)

recovering from Definition 2.10 the usual definition of Berezin-Toeplitz quantization asso-
ciated with the volume form dνh, as described in [27, Chap. 7]. The following fundamental 
Theorem describes the semi-classical behavior of the Berezin-Toeplitz quantization as 
p → +∞. We write ‖ · ‖op for the operator norm on endomorphisms of Hp.

Theorem 2.11. [28, Th. 1.1] For any f, g ∈ C∞(X, R), there exist bi-differential operators 
C

(r)
h for all r ∈ N such that for any k ∈ N, there exists Ck > 0 such that for all p ∈ N∗

big enough, ∥∥∥∥∥Thp(f)Thp(g) −
k−1∑ 1

pr
Thp(C(r)

h (f, g))

∥∥∥∥∥ � Ck

pk
, (2.37)
r=0 op
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where C(0)
h (f, g) ∈ C∞(X, R) is given by C(0)

h (f, g) = fg.
Furthermore, the bi-differential operators C(r)

h depend smoothly on h ∈ Met+(L) and 
its successive derivatives for all r ∈ N, and for each k ∈ N, there exists l ∈ N such that 
the constant Ck > 0 can be chosen uniformly for f, g ∈ C∞(X, R) and h ∈ Met+(L) in 
a bounded subset in C l-norm.

In the context of quantization, the Berezin symbol (2.35) of a quantum observable 
A ∈ L (Hp) is interpreted as the classical observable given by the expectation value of A
at coherent states. The following result shows that this operator is dual to the Berezin-
Toeplitz quantization with respect to the trace norm on L (Hp) and the L2-norm on 
C∞(X, R) induced by the density ρhp dνh.

Proposition 2.12. For any A ∈ L (Hp) and f ∈ C∞(X, R), we have

Tr[Thp(f)A] =
∫
X

f σhp(A) ρhp dνh . (2.38)

Furthermore, we have Thp(1) = IdHp
and σhp(IdHp

) = 1.

Proof. Formula (2.38) is an immediate consequence of Definition 2.10. On the other 
hand, by Definition 2.8 we have∫

X

Πhp(x) ρhp(x) dνh(x) = IdHp
. (2.39)

This implies the identity Thp(1) = IdHp
, while the second identity is a consequence of 

the fact that Πhp is a rank-1 projector, so that Tr[Πhp ] = 1. �
This gives rise to the following concept, which will be the main technical tool of this 

paper.

Definition 2.13. The Berezin transform is the linear operator

Bhp : C∞(X,R) −→ C∞(X,R) ,

f �−→ σhp (Thp (f)) .
(2.40)

As explained in details in [22, §2], the Berezin transform is a Markov operator with 
stationary measure ρhp dνh, and measures the delocalisation of a classical observable after 
quantization. From this point of view, the following semi-classical result can be thought 
as a quantitative refinement of the celebrated Heisenberg’s uncertainty principle, and 
refines a semi-classical expansion due to Karabegov and Schlichenmaier [24].



16 L. Ioos / Journal of Functional Analysis 282 (2022) 109400
Theorem 2.14. [27, Lem. 7.2.4], [22, Prop. 4.8] For any f ∈ C∞(X, R), there exist dif-
ferential operators D(r)

h ∈ C∞(X, R) for all r ∈ N such that for any k, m ∈ N, there 
exists a constant Cm,k > 0 such that for all p ∈ N∗ big enough,∣∣∣∣∣Bhp(f) −

k−1∑
r=0

p−r D
(r)
h (f)

∣∣∣∣∣
Cm

� Cm,k

pk
, (2.41)

with D(0)
h (f) = f and D(1)

h (f) = 1
4πΔh f , where Δh is the Riemannian Laplacian of 

(X, gTX
h ).

Furthermore, the differential operators D(r)
h depend smoothly on h ∈ Met+(L) and its 

successive derivatives for all r ∈ N, and for every m, k ∈ N, there exists l ∈ N such that 
the constant Cm,k > 0 can be chosen uniformly for f ∈ C∞(X, R) and h ∈ Met+(L) in 
a bounded subset in C l-norm.

3. Quantum action of the automorphism group

One basic property of any reasonable quantization is its compatibility with symme-
tries, represented here by the action of the automorphism group Aut(X). In this Section, 
we will establish this fact through the use of Berezin-Toeplitz quantization, and establish 
fundamental properties of the quantized Futaki invariant (1.7) as a holomorphic invari-
ant for this action. In the whole Section, we fix h ∈ Met+(L) and consider the setting of 
Section 2.3.

3.1. Quantization of the holomorphy potentials

Let K ⊂ Aut0(X) be the identity component of the group of holomorphic isometries 
of (X, gTX

h ). In the notations of Section 2.3, the action of K on X lifts to a unitary action 
on Hp, and any ξ ∈

√
−1 LieT induces a Hermitian operator Lξ ∈ L (Hp) defined via 

formula (2.4). On the other hand, Remark 2.3 implies that θh(ξ) ∈ C∞(X, R) generates a 
Hamiltonian flow φtJξ ∈ K, for all t ∈ R. From general principles, the Hermitian operator 
Lξ ∈ L (Hp) can thus be seen as the appropriate quantization of the classical observable 
θh(ξ) ∈ C∞(X, R), and the following result illustrates this principle via Berezin-Toeplitz 
quantization. Recall that we consider Berezin-Toeplitz quantization with respect to the 
anticanonical volume form (1.4) instead of the usual Liouville form.

Proposition 3.1. For any ξ ∈ Lie Aut(X), the induced operator Lξ ∈ End(Hp) satisfies

Lξ = (p + 1)Thp (θh(ξ)) . (3.1)

In particular, there exists a constant C > 0, independent of hp ∈ Met+(Lp) and ξ ∈
Lie Aut(X), such that for any p ∈ N∗, we have

‖Lξ‖op < C p |ξ| . (3.2)
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Proof. This is version of an argument due to Tuynman [45], adapted to the anticanon-
ical volume form (1.4). Recall that the Chern connection ∇h induces the holomorphic 
structure of L, and recall the variation formulas (2.3) and (2.5) for the anticanonical 
volume form. Then by Proposition 2.2, for any holomorphic sections s1, s2 ∈ H0(X, Lp)
we get∫

X

〈∇hp

ξ s1, s2〉hp dνh =
∫
X

〈∇hp

ξ1,0s1, s2〉hp dνh =
∫
X

Lξ1,0〈s1, s2〉hp dνh

= −
∫
X

〈s1, s2〉hp Lξ1,0dνh =
∫
X

θh(ξ) 〈s1, s2〉hp dνh

(3.3)

On the other hand, Definition 2.1 implies that for any s ∈ Hp, we have

p θh(ξ) s = Lξ s−∇hp

ξ s . (3.4)

Then using formula (2.36) for the Berezin-Toeplitz quantization map, for any s1, s2 ∈ Hp

we get

〈Lξ s1, s2〉L2(hp) = p

∫
X

θh(ξ)〈s1, s2〉hp dνh +
∫
X

〈∇hp

ξ s1, s2〉hp dνh

= (p + 1) 〈Tp(θh(ξ)) s1, s2〉L2(hp) .

(3.5)

This gives the identity (3.1), which implies in turn the inequality (3.2) via formula 
(2.36). �

Using Theorem 2.11, we can establish the following result, which is an exponentiation 
of Proposition 3.1.

Proposition 3.2. There exist functions θ(j)
ξ ∈ C∞(X, C) for all j ∈ N, depending 

smoothly on ξ ∈ Lie Aut(X), such that for any k ∈ N, the exponential eLξ/p ∈ End(Hp)
satisfies the following expansion in the sense of the operator norm as p → +∞,

eLξ/p = Thp

(
eθh(ξ)

)
+

k−1∑
j=1

p−j Thp(θ(j)
ξ ) + O(p−k) . (3.6)

In particular, there exists a constant C > 0 such that for all p ∈ N∗ big enough,

C−1pn � Tr
[
eLξ/p

]
� Cpn . (3.7)

These estimates are uniform for ξ ∈ Lie Aut(X) and h ∈ Met+(L) in any bounded set 
in C l-norm.
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Proof. In this proof, the notation O(p−k) for some k ∈ N is taken in the sense of 
the operator norm as p → +∞, uniformly in the C l-norm of θh(ξ) ∈ C∞(X, R) and 
h ∈ Met+(L), for some l ∈ N only depending on k ∈ N and for all t ∈ [0, 1].

First note that Proposition 3.1 implies the following ordinary differential equation in 
t ∈ [0, 1], ⎧⎪⎨⎪⎩

∂
∂t e

tLξ/p =
(
1 + 1

p

)
Thp(θh(ξ))etLξ/p

etLξ/p
∣∣
t=0 = IdHp

.

(3.8)

On the other hand, Theorem 2.11 implies that for all t ∈ [0, 1], we have

∂

∂t
Thp(etθh(ξ)) = Thp(θh(ξ))Thp(etθh(ξ)) + O(p−1) . (3.9)

Using the fact from Definition 2.10 and formula (2.39) that Thp(1) = IdHp
, we can then 

apply Grönwall’s lemma to the difference of (3.8) and (3.9) to get the expansion (3.6)
for k = 1.

Assume now by induction on k � 2 that there exist a function gk,t ∈ C∞(X, C) and 
functions fj,t ∈ C∞(X, C) for all 1 � j � k − 1, all smooth in t ∈ [0, 1], such that

(
1 + 1

p

)
Thp(θh(ξ))Thp

⎛⎝k−1∑
j=0

p−jfj,t

⎞⎠
= ∂

∂t
Thp

⎛⎝k−1∑
j=0

p−jfj,t

⎞⎠+ p−kThp(gk,t) + O(p−k+1) . (3.10)

Using Theorem 2.11, we then see that (3.10) holds for k replaced by k + 1, with the 
function fk,t ∈ C∞(X, R) defined as the solution of the ordinary differential equation⎧⎪⎨⎪⎩

∂
∂t fk,t = fk,t θh(ξ) + gk,t

fk,0 = 0 .
(3.11)

This shows by induction that (3.10) holds for all k ∈ N. Applying Grönwall’s lemma to 
the difference of (3.8) and (3.10) as above, this gives the result taking θ(j)

ξ := fj,1 for 
all j ∈ N. The smooth dependance on ξ ∈ Lie Aut(X) is then clear from the ordinary 
differential equation (3.11).

Recall on the other hand that the coherent state projector of Definition 2.8 is a rank-1
projector, so that Tr[Πp(x)] = 1 for all x ∈ X. Using Theorem 2.9 and formula (2.39), 
we then get a constant C > 0 such that the dimension of Hp satisfies np < Cpn for 
all p ∈ N∗, which implies Tr [A] � Cpn ‖A‖op for all A ∈ End(Hp) and p ∈ N∗ by 
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Cauchy-Schwartz inequality. The inequality (3.7) then follows by applying this estimate 
to A = O(p−1) in the expansion (3.6) for k = 1, and by Definition 2.10 of the Berezin-
Toeplitz quantization map. �
3.2. Quantized Futaki invariants

In this Section, we study the quantized Futaki invariants Section 3.2, which play a 
central role in this paper. Recall that for any ξ ∈ Lie Aut(X) and any p ∈ N∗, we have 
an operator Lξ ∈ End(H0(X, Lp)) defined by formula (2.4).

Recall the decomposition (2.8) for the Lie algebra of the complexification KC ⊂
Aut0(X) of any compact subgroup K ⊂ Aut0(X). We will establish a quantized version 
of Proposition 2.4 of Tian and Zhu, whose first part is given by the following result. It 
can also be found in [41, §3.1], but we give here a short proof using Berezin-Toeplitz 
quantization.

Lemma 3.3. Let T ⊂ Aut(X) be a compact torus. Then for any ∈ N, the functional 
Fp :

√
−1LieT → R defined by the formula

Fp(ξ) := pTr[eLξ/p] , (3.12)

is strictly convex and proper.

Proof. Let T ⊂ Aut(X) be a compact torus, and consider the setting of Section 2.3 with 
a T -invariant positive Hermitian metric h ∈ Met+(L)T , which can always be constructed 
by average over T . Then for any ξ ∈

√
−1 LieT , Proposition 2.2 implies that there exists 

x ∈ X such that θh(ξ)(x) > 0. Let now p ∈ N∗ be large enough so that the Kodaira 
map (2.28) is well-defined, and let sp ∈ Hp with ‖sp‖L2(hp) = 1 be in the image of the 
coherent state projector Πhp(x) ∈ L (Hp) of Definition 2.8. Then from Theorem 2.14
and Proposition 3.1, as p → +∞ we get

〈Lξsx, sx〉L2(hp) = Tr[LξΠhp(x)] = Bhp(θh(ξ))(x) = θh(ξ)(x) + O(p−1) , (3.13)

uniformly in the C l-norm of θh(ξ) for some l ∈ N. Thus there exists p0 ∈ N independent 
of ξ ∈ Lie Aut(X) such that Lξ ∈ L (Hp) is non-negative for all p � p0. For any p ∈ N∗, 
write Specp(T ) ⊂ (LieT )∗ for the joint spectrum of Lξ ∈ L (Hp) for all ξ ∈

√
−1 LieT . 

Taking p � p0, we then get that for any ξ ∈
√
−1LieT , there exists χ0 ∈ Specp(T ) such 

that (χ0, ξ) > 0. Thus for any η ∈
√
−1 LieT , we have

d2

dt2
Fp(η + tξ) = p−1

∑
χ∈Specp(T )

(χ, ξ)2e(χ,η+tξ)/p > 0 (3.14)

and
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Fp(η + tξ) = p
∑

χ∈Specp(T )

e(χ,η+tξ)/p � p e(χ0,η)/pet(χ0,ξ)/p t→+∞−−−−→ +∞ . (3.15)

This proves the result. �
We then have the following corollary, which is a central property of the quantized 

Futaki invariants (1.7) and which is the quantization of the second part of Proposition 2.4. 
It can also be found in [41, §3.2].

Corollary 3.4. Let K ⊂ Aut0(X) be a connected compact subgroup, and let T ⊂ K

be the identity component of its center. Then for any p ∈ N∗ big enough, there ex-
ists a unique ξp ∈

√
−1LieK such that the associated quantized Futaki invariant

Futξpp :
√
−1LieK → C vanishes identically, which is given by the unique minimizer 

of the functional Fp :
√
−1 LieT → R of Lemma 3.3.

Proof. Fix p ∈ N∗, and note that for any compact torus T ⊂ Aut0(X) and any ξ, η ∈√
−1 LieT , we have

Futξp(η) = ∂

∂t

∣∣
t=0 Fp(ξ + tη) . (3.16)

Now Lemma 3.3 implies that Fp :
√
−1LieT → R admits a unique minimizer, which is 

the unique ξp ∈
√
−1 LieT such that Futξp(η) = 0 for all η ∈

√
−1LieT .

Let now K ⊂ Aut0(X) be a connected compact subgroup, and let T ⊂ K be the 
identity component of its center. Then for any ξ1, ξ2 ∈ LieKC, we have

Tr[L[ξ1,ξ2]e
Lξp/p] = Tr

[
[Lξ1 , Lξ2e

Lξp/p]
]

= 0 , (3.17)

so that Futξpp (η) = 0 for all η ∈ [LieKC, LieKC] ⊂ LieKC. Using the classical de-
composition LieKC = LieTC ⊕ [LieKC, LieKC], we then get that Futξpp (η) = 0 for all 
η ∈ LieKC.

Assume now that ξ̃p ∈
√
−1LieK is such that Futξ̃pp (η) = 0 for all η ∈ LieKC, and 

let now T̃ ⊂ K be a maximal compact torus such that ξ̃p ∈
√
−1Lie T̃ . Then we have 

LieTC ⊂ Lie T̃C by definition of a maximal torus, and we have ξ̃p = ξp by uniqueness of 
the minimizer of Fp :

√
−1Lie T̃ → R given by Lemma 3.3. This gives the result. �

3.3. Asymptotic expansion of the quantized Futaki invariant

In this Section, we fix a connected compact subgroup K ⊂ Aut0(X) and write T ⊂ K

for the identity component of its center. The following result describes the semi-classical 
behavior of the quantized Futaki invariant (1.7) and the functional (3.12) as p → +∞, 
recovering the modified Futaki invariant (2.17) and the functional (2.16) as the highest 
order coefficient respectively. As explained for instance in [3, §4.4], this is essentially a 
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consequence of the equivariant Riemann-Roch formula, but we give here a short proof 
using Berezin-Toeplitz quantization.

Proposition 3.5. There exist smooth maps F (j)
p :

√
−1 LieK → C for all j ∈ N such that 

for any k ∈ N∗, we have the following asymptotic expansion as p → +∞,

Fp(η)
pn+1 = F (η) +

k−1∑
j=1

p−j F (j)
p (η) + O(p−k) . (3.18)

Furthermore, there exist linear maps Fut(j)ξ : Lie Aut(X) → C for all j ∈ N, depending 
smoothly on ξ ∈ Lie Aut(X), such that for any k ∈ N∗, we have the following asymptotic 
expansion as p → +∞,

Futξp(η)
pn+1 = Futξ(η) +

k−1∑
j=1

p−j Fut(j)ξ (η) + O(p−k) . (3.19)

These estimates are uniform for ξ, η ∈ Lie Aut(X) in any compact set.

Proof. Fix h ∈ Met+(L). Using Proposition 2.12 and Definition 2.13 and by Theo-
rems 2.9 and 2.14, we get differential operators Dj for any j ∈ N such that for any 
f, g ∈ C∞(X, C), any k ∈ N and as p → +∞,

Tr[Thp(f)Thp(g)] =
∫
X

f Bhp(g) ρp dνh

= pn
∫
X

f g
ωn
h

n! +
k−1∑
j=1

pn−j

∫
X

f Dj(g) dνh + O(pn−k) ,
(3.20)

uniformly in the derivatives of f, g up to order l ∈ N only depending on k ∈ N.
Now using Propositions 3.1 and 3.2, for any k ∈ N and as p → +∞, the quantized 

Futaki invariant (1.7) and the functional (3.12) satisfy

Futξp(η)
p + 1 = Tr

[
Thp(θh(η))Thp(eθh(ξ))

]
+

k−1∑
j=1

p−j Tr
[
Thp(θh(η))Thp(θ(j)

ξ )
]

+ O(p−k) and

Fp(ξ)
p

= Tr
[
Thp(eθh(ξ))

]
+

k−1∑
j=1

p−j Tr
[
Thp(θ(j)

ξ )
]

+ O(p−k) , (3.21)
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uniformly for ξ, η ∈ Lie Aut(X) in any compact set. Using the fact from Proposition 2.12
that IdHp

= Thp(1), we can then apply the identity (3.20) to the expansions (3.21) and 
compare with Proposition 2.4 for the first coefficients to get the result. �

The following result describes the semi-classical behavior of the sequence of vector 
fields produced by Corollary 3.4 as p → +∞, recovering the vector field of Proposition 2.4
as the highest coefficient. This is an anticanonical analogue of the result of Sano and 
Tipler in [39, Lem. 4.5], and the proof closely follows their strategy.

Proposition 3.6. There exist ξ(j) ∈
√
−1 LieT for all j ∈ N such that for any k ∈ N, 

the sequence {ξp ∈
√
−1LieT}p∈N∗ of Corollary 3.4 satisfies the following expansion as 

p → +∞,

ξp = ξ∞ +
k−1∑
j=1

p−j ξ(j) + O(p−k) , (3.22)

where ξ∞ ∈
√
−1LieT is the unique minimizer of the functional (2.16).

Proof. Let h ∈ Met+(L)T be a T -invariant metric, which always exists by average over 
T . Using Proposition 3.5, we know that for all η ∈

√
−1LieT , the functionals (2.16) and 

(3.12) satisfy Fp(η) 
p→+∞−−−−−→ F (η). As these functionals are strictly convex and proper, 

this implies that their unique minimizers satisfy

ξp
p→+∞−−−−−→ ξ∞ . (3.23)

From Proposition 2.4, we know that Futξ∞(η) = 0 for all η ∈ LieKC. Using Proposi-
tion 3.5 and formula (2.16) for the first coefficient, we can take the Taylor expansion as 
p → +∞ of Futξ∞+p−1ξ(1)

p (η) for any ξ(1) ∈
√
−1LieT to get

Futξ∞+p−1ξ(1)

p (η)
pn+1 = p−1

⎛⎝Fut(1)ξ∞
(η) +

∫
X

θh(η) θh(ξ(1)) eθh(ξ∞) ω
n
h

n!

⎞⎠+ O(p−2) . (3.24)

Recall now the linear embedding θh : LieTC → C∞(X, C) induced by Proposition 2.2, 
and restrict the scalar product L2(h∞, ξ∞) defined in Lemma 2.6 for K = T to the 
subspace 〈θh(ξ) | ξ ∈

√
−1 LieT 〉 ⊂ C∞(X, R)T . Then by non-degeneracy, for any linear 

form G : LieTC → C, there exists a unique ξG ∈
√
−1 LieT such that for all η ∈ LieTC,

G(η) +
∫

θh(η) θh(ξG) eθh(ξ∞) ω
n
h

n! = 0 . (3.25)

X
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Setting ξ(1) := ξG for G = Fut(1)ξ∞
, the first term of the right hand side of (3.24) vanishes. 

Now for any ξ(2) ∈
√
−1LieT , this together with Proposition 3.5 and formula (3.24)

gives a linear form G(2) : LieTC → C such that for any η ∈ LieTC we have as p → +∞,

Futξ∞+p−1ξ(1)+p−2ξ(2)

p (η)
pn+1

= p−2

⎛⎝G(2)(η) +
∫
X

θh(η) θh(ξ(2)) eθh(ξ∞) ω
n
h

n!

⎞⎠+ O(p−3) . (3.26)

Taking ξ(2) := ξG(2) as in (3.25), the first term in the right hand side of the expansion 
(3.26) vanishes. Repeating this reasoning, we then construct by induction a sequence 
ξ(j) ∈

√
−1LieT, j ∈ N, such that for all k ∈ N and η ∈ LieTC, we have as p → +∞,

Futξ∞+
∑k

j=1 p−jξ(j)

p (η) = O(pn−k) . (3.27)

For all p, k ∈ N, set ξ(k)
p := ξ∞ +

∑k
j=1 p

−jξ(j). Then using Corollary 3.4 and formula 
(3.27), we know that for all k ∈ N and as p → +∞,

1∫
0

∂

∂t
Futtξ

(k)
p +(1−t)ξp

p (η) dt = Futξ
(k)
p

p (η) − Futξpp (η) = O(pn−k) , (3.28)

uniformly for η ∈ LieTC in any compact set. On the other hand, recall from (3.23) that 
tξ

(k)
p + (1 − t)ξp → ξ∞ uniformly in t ∈ [0, 1] as p → +∞. Together with Theorem 2.11

and Proposition 3.1, this implies the existence of constants l ∈ N, C, c, ε > 0 such that 
for all p ∈ N∗ big enough,

1∫
0

∂

∂t
Fut

tξ
(k)
p +(1−t)ξp

(ξ(k)
p − ξp) dt

= p−1
1∫

0

Tr
[(

L
ξ
(k)
p −ξp

)2
exp
(
p−1
(
tL

ξ
(k)
p

+ (1 − t)Lξp

))]
dt

� εp−1(p + 1)2 Tr
[
Thp

(
θh(ξ(k)

p − ξp)
)2]

� pn+1 (c− Cp−1) ∣∣∣θh(ξ(k)
p − ξp)

∣∣∣2
C l

.

(3.29)

Combining the estimates (3.28) and (3.29), we get as p → +∞,∣∣∣θh(ξ(k)
p − ξp)

∣∣∣2 = O(p−k−1) , (3.30)

Cm
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which in turn implies that |ξ(k)
p − ξp|2 = O(p−k−1) by equivalence of norms on the 

finite dimensional space 
√
−1LieT , as θh :

√
−1LieT → C∞(X, R) is an embedding by 

Proposition 2.2. This proves the result. �
4. Balanced metrics

In this Section, we study the notion (1.5) of an anticanonically balanced metric relative 
to ξ ∈ Lie Aut(X), and using the quantized Futaki invariant (1.7) as an obstruction for 
their existence, we show that the vector field ξ is determined by the complex geometry 
of X.

In the whole Section, we consider p ∈ N∗ big enough so that the Kodaira map (2.28)
is well-defined and an embedding, and fix a compact torus T ⊂ Aut0(X). We will use 
freely the decomposition (2.8) for K = T .

4.1. Fubini-Study metrics

Let H be a T -invariant Hermitian inner product on H0(X, Lp), which always exists by 
average over T . For all ξ ∈

√
−1LieT , the operators Lξ ∈ End(H0(X, Lp)) induced by 

formula (2.4) are then Hermitian with respect to H, so that they admit a joint spectrum 
Specp(T ) ⊂ (LieT )∗ not depending on H. For any χ ∈ Specp(T ), write

H0(X,Lp)χ := {s ∈ H0(X,Lp) | Lξ s = (χ, ξ) s for all ξ ∈ LieT} . (4.1)

Write B(H0(X, Lp)χ) for the space of bases of H0(X, Lp)χ, and set

B(H0(X,Lp))T :=
∏

χ∈Specp(T )

B(H0(X,Lp)χ) . (4.2)

For any χ ∈ Specp(T ), write np(χ) := dimH0(X, Lp)χ. The space B(H0(X, Lp))T
admits a free and transitive action of the group

GL(Cnp)T :=
⊗

χ∈Specp(T )

GL(Cnp(χ)) , (4.3)

acting component by component by the canonical action of GL(Cnp(χ)) on bases of 
H0(X, Lp)χ, for all χ ∈ Specp(T ). Note that for any ξ ∈ LieTC, we have eLξ ∈ GL(Cnp)T
acting in a canonical way as a scalar on each component. For any n ∈ N, we write 
U(n) ⊂ GL(Cn) for the subgroup of unitary matrices acting on Cn, and we set

U(np)T :=
⊗

χ∈Specp(T )

U(np(χ)) ⊂ GL(Cnp)T . (4.4)

To any s ∈ B(H0(X, Lp))T , we can associate a basis {sj}np

j=1 of H0(X, Lp), uniquely 
determined up to reordering by the condition that it restricts to the corresponding 
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basis of H0(X, Lp)χ for each χ ∈ Specp(T ). We write Hs for the unique T -invariant 
inner product on H0(X, Lp) for which {sj}np

j=1 is orthonormal. Conversely, we say that 
s ∈ B(H0(X, Lp))T is orthonormal with respect to a Hermitian inner product H on 
H0(X, Lp) if {sj}np

j=1 is, so that Hs = H.
We are now ready to introduce the main definition of the Section.

Definition 4.1. For any s ∈ B(H0(X, Lp))T , the associated Fubini-Study metric hp
s ∈

Met+(Lp) is characterized for any s1, s2 ∈ H0(X, Lp) and x ∈ X by the formula

〈s1(x), s2(x)〉hp
s := 〈Πs(x) s1, s2〉Hs , (4.5)

where Πs(x) is the unique orthogonal projector with respect to Hs satisfying

Ker Πs(x) = { s ∈ H0(X,Lp) | s(x) = 0 } . (4.6)

That formula (4.5) defines a positive Hermitian metric is a consequence of the fact 
that the Kodaira map (2.28) is an embedding.

For any T -invariant Hermitian product H, write L (H0(X, Lp), H)T for the space of 
Hermitian operators with respect to H commuting with the action of T . Via the action of 
GL(Cnp)T on B(H0(X, Lp))T , any given s ∈ B(H0(X, Lp))T induces an identification

L (H0(X,Lp), Hs)T � Herm(Cnp)T :=
⊕

χ∈Specp(T )

Herm(Cnp(χ)) . (4.7)

In particular, for any ξ ∈
√
−1LieT , we have Lξ ∈ Herm(Cnp)T not depending on 

s ∈ B(H0(X, Lp))T . We then have the following basic variation formula for Fubini-
Study metrics.

Proposition 4.2. For any s ∈ B(H0(X, Lp))T and A ∈ L (H0(X, Lp), Hs)T , set

σs(A) := Tr[AΠs] ∈ C∞(X,R) . (4.8)

Then for any B ∈ Herm(Cnp)T , we have

σs(e2B)hp
eBs = hp

s , (4.9)

in the identification (4.7) induced by s ∈ B(H0(X, Lp))T .

Proof. First note that for any s ∈ B(H0(X, Lp))T , writing {sj}np

j=1 for an induced basis 
of H0(X, Lp), Definition 4.1 implies

np∑
|sj |2hp

s
=

np∑
〈ΠHssj , sj〉Hs = Tr[ΠHs ] = 1 , (4.10)
j=1 j=1
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and this formula characterizes hp
s ∈ Met+(Lp)T . On the other hand, for any B ∈

L (H0(X, Lp), Hs), we have

σHs(e2B) = Tr[eBΠHse
B]

=
np∑
j=1

〈ΠHse
Bsj , e

Bsj〉Hs =
np∑
j=1

∣∣eBsj ∣∣2hp
s
,

(4.11)

which gives the result by the characterization (4.10) applied to both hs and heBs. �
Remark 4.3. Let K be a compact Lie group containing T in its center, and let 
hp ∈ Met+(Lp)K be a K-invariant positive Hermitian metric. Then the associated L2-
Hermitian product L2(hp) given by formula (2.26) is also K-invariant, and there exists 
sp ∈ B(H0(X, Lp))T orthonormal with respect to L2(hp). Furthermore, the orthogonal 
projector Πsp(x) of Definition 4.1 coincides with the coherent state projector of Defini-
tion 2.8 at x ∈ X, so that

hp = ρhp hp
sp , (4.12)

and the function σsp(A) ∈ C∞(X, R) defined by formula (4.8) for any A ∈ L (Hp)
commuting with the action of T , coincides with its Berezin symbol as in Definition 2.10.

Let us end this section by the following variation formula for the Berezin symbol with 
respect to a change of basis

Proposition 4.4. For any s ∈ B(H0(X, Lp))T , any B ∈ Herm(Cnp)T and any A ∈
L (H0(X, Lp), HeBs)T , in the identification (4.7) induced by s, we have

σeBs(A)σs(e2B) = σs(eBAeB) . (4.13)

In particular, for any ξ ∈
√
−1 LieT , we have σs(e2LξA) = σeLξ s(A)σs(e2Lξ).

Proof. Let s ∈ B(H0(X, Lp))T be given, and let {sj}np

j=1 be an induced basis of 
H0(X, Lp). Then by Definition 4.1, the projector Πs(x) at x ∈ X of can be written 
in this basis as

Πs(x) =
(
〈sj(x), sk(x)〉hp

s

)np

j, k=1
. (4.14)

Take now B ∈ Herm(Cnp)T , seen as a Hermitian operator with respect to Hs via the 
identification (4.7), and take A ∈ L (H0(X, Lp), HeBs)T . Writing them in the basis 
{sj}np

j=1, using Definition 4.1 and Proposition 4.2, we then get
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σeBs(A) =
np∑

j,k=1

〈AeBsk, e
Bsj〉hp

eB s

= σs(e2B)−1
np∑

l,m=1

(
eBAeB

)
ml

〈sl, sm〉hp
s = σs(e2B)−1 σs(eBAeB) .

(4.15)

This gives the result. �
4.2. Relative balanced metrics

In this Section, we introduce the notion of relatively balanced metrics, and we exhibit 
their role as a quantized version of Kähler-Ricci solitons. In particular, we will establish a 
quantized version of Proposition 2.5 of Tian and Zhu for the quantized Futaki invariant.

Recall that we write hp
s ∈ Met+(Lp)T for the Fubini-Study metric of Definition 4.1

associated with any s ∈ B(H0(X, Lp))T , and recall that for any ξ ∈ Lie Aut(X), we write 
φξ ∈ Aut(X) for its exponentiation. We will need the following equivariance property.

Proposition 4.5. For any s ∈ B(H0(X, Lp))T and any η ∈ Lie Aut(X) such that Lη ∈
L (H0(X, Lp), Hs)T , we have

φ∗
η hs = heLη s and φ∗

η σs(A) = σeLη s(e−LηAeLη) , (4.16)

for any A ∈ L (H0(X, Lp), Hs)T .
Furthermore, if Hs is preserved by a connected subgroup K ⊂ Aut0(X), the Fubini-

Study metric hp
s ∈ Met+(Lp) is K-invariant.

Proof. Let s ∈ B(H0(X, Lp))T be given, and let η ∈ Lie Aut(X) be such that 
Lη ∈ L (H0(X, Lp), Hs)T . For any s1, s2 ∈ H0(X, Lp), we have by definition that 
〈s1, s2〉H

e
Lη s

= 〈e−Lηs1, e−Lηs2〉Hs , and for any x ∈ X, we have the identity

ΠeLη s(x) = eLηΠs(φη(x))e−Lη , (4.17)

which follows from the fact that both sides are orthogonal projectors with respect to 
HeLη s, and have common kernel by formula (4.6). Plugging these two identities in formula 
(4.5) for hp

eLη s and using formula (2.4) for Lη, we get

〈s1(x), s2(x)〉hp

e
Lη s

= 〈Πs(φη(x))e−Lηs1, e
−Lηs2〉Hs

= 〈e−Lηs1(φη(x)), e−Lηs2(φη(x))〉hp
s ,

(4.18)

which gives the first identity of (4.16) by definition of the pullback of a Hermitian metric. 
On the other hand, from formula (4.17) we get

σs(A)(φη(x)) = Tr[e−LηΠeLη s(x)eLηA] = σeLη s(e−LηAeLη)(x) . (4.19)
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This gives the second identity of (4.16) and concludes the proof. Finally, the fact that 
hp

s is K-invariant when K ⊂ Aut0(X) preserves Hs then follows from Definition 4.1, as 
Πs only depends on Hs. �

To simplify notations, let us write ωs := ωhs for the Kähler form associated with the 
Fubini-Study metric induced by s ∈ B(H0(X, Lp))T . From Proposition 4.5, a positive 
Hermitian metric hp ∈ Met+(Lp)T is anticanonically balanced relative to ξ ∈ Lie Aut(X)
in the sense of formula (1.5) if ξ ∈

√
−1 LieT and if for any sp ∈ B(H0(X, Lp))T

orthonormal with respect to L2(hp), we have

ωhp = ω
eLξ/2psp . (4.20)

We then have the following useful alternative characterization of relatively balanced 
metrics.

Proposition 4.6. A positive Hermitian metric hp ∈ Met+(Lp)T is anticanonically bal-
anced relative to ξ ∈

√
−1LieT if and only if the associated Rawnsley function satisfies

σhp(eLξ/p)ρhp = Tr[eLξ/p]
Vol(dνh) . (4.21)

Proof. Consider hp ∈ Met+(Lp)T , and let sp ∈ B(H0(X, Lp))T be orthonormal with 
respect to L2(hp) as in Remark 4.3. Using also Proposition 4.2, we have

hp = ρhp hp
sp = ρhp σhp(eLξ/p)hp

eLξ/2psp
. (4.22)

Using (1.5), we then get that hp ∈ Met+(Lp)T is anticanonically balanced relative to 
ξ ∈

√
−1 LieT if and only if the function ρhp σhp(eLξ/p) ∈ C∞(X, R) is constant over 

X. To compute this constant, it suffices to note that Proposition 2.12 implies

∫
X

ρhp σhp(eLξ/p) dνh = Tr[eLξ/p] . (4.23)

This gives the result. �
Using this characterization of relative anticanonically balanced metrics together with 

the tools of Sections 2.3 and 3.1, we can now give a short proof of the following key fact.

Proposition 4.7. If there exists an anticanonically balanced metric hp ∈ Met+(Lp) relative 
to ξ ∈ Lie Aut(X), then the quantized Futaki invariant Futξp : Lie Aut(X) → C vanishes 
identically.
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Proof. Let hp ∈ Met+(Lp)T be anticanonically balanced metric relative to ξ ∈√
−1 LieT . Then by definition (1.7) of the quantized Futaki invariant relative to ξ, using 

Propositions 2.2, 2.12, 3.1 and 4.6, for any η ∈ Lie Aut(X) we get

Futξp(η)
p + 1 = Tr[Thp(θh(η))eLξ/p] =

∫
X

θh(η)σhp(eLξ/p) ρhp dνh

= Tr[eLξ/p]
Vol(dνh)

∫
X

θh(η) dνh = 0 .
(4.24)

This shows the result. �
4.3. Relative moment maps

In this section, we give the finite dimensional characterization of relative balanced 
metrics, using a relative version of Donaldson’s moment map picture in [13]. For any 
s ∈ B(H0(X, Lp))T , let us write dνs := dνhs for the anticanonical volume form (1.4)
induced by the associated Fubini-Study metric.

Definition 4.8. The anticanonical moment map relative to ξ ∈
√
−1LieT is the map 

μξ : B(H0(X, Lp))T → Herm(Cnp)T defined for all s ∈ B(H0(X, Lp))T by the formula

μξ(s) :=

⎛⎝∫
X

〈sj(x), sk(x)〉
eLξ/2ps dνeLξ/2ps(x)

⎞⎠np

j, k=1

− Vol(dνs)
Tr[eLξ/p]

Id , (4.25)

where {sj}np

j=1 is an induced basis of H0(X, Lp).

Note that we wrote formula (4.25) as an element of Herm(Cnp) instead of Herm(Cnp)T . 
However, Proposition 4.5 shows that L2(h

eLξ/2ps) is T -invariant, so that the right hand 
side of (4.25) splits into blocks corresponding to the eigenspaces (4.1) of the action of 
T on H0(X, Lp), giving an element of Herm(Cnp)T as in formula (4.7) depending only 
on s ∈ B(H0(X, Lp))T . This identification will always be implicitly understood in the 
sequel.

Note that we do not claim that Definition 4.8 defines an actual relative moment map 
in the usual sense, and we will consequently not use any moment map property as such 
anywhere in this paper. We will however stick to this name, as it is the anticanonical 
analogue of the relative moment map considered by Sano and Tipler in [39, §3.3]. Its 
relevance in the context of balanced metrics comes from the following basic result, which 
follows immediately from the definition.
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Proposition 4.9. For any ξ ∈
√
−1LieT and s ∈ B(H0(X, Lp))T , we have

μξ(s) = 0 (4.26)

if and only if there exists an anticanonically balanced metric hp ∈ Met+(Lp)T relative to 
ξ for which s is orthonormal with respect to L2(hp).

Proof. Writing

hp := Vol(dνs)
Tr[eLξ/p]

hp

eLξ/ps
, (4.27)

Definition 4.8 shows that s is orthonormal with respect to L2(hp) if and only if μξ(s) = 0. 
Hence formula (4.27) for hp ∈ Met+(Lp)T implies formula (4.20) for an anticanonically 
balanced metric with respect to ξ. This gives the result. �

For any ξ ∈
√
−1LieT , consider the scalar product 〈·, ·〉ξ defined on any A, B ∈

Herm(Cnp)T by

〈A,B〉ξ := Tr[eLξ/pAB] . (4.28)

We then have the following important obstruction result, which is compatible with Propo-
sition 4.7 via Proposition 4.9.

Proposition 4.10. For any ξ ∈
√
−1 LieT and s ∈ B(H0(X, Lp))T , we have the identity

〈Id, μξ(s)〉ξ = 0, and for any η ∈
√
−1 LieT , we have the identity

p〈Lη, μξ(s)〉ξ = − Vol(dνs)
Tr[eLξ/p]

Futξp(η) . (4.29)

Furthermore, for any connected compact subgroup K ⊂ Aut0(X) preserving Hs and 
containing T ⊂ K in its center, we have that μξ(s) ∈ Herm(Cnp)T commutes with the 
action of K on H0(X, Lp) via the identification (4.7).

Proof. Let ξ ∈
√
−1LieT and s ∈ B(H0(X, Lp))T be given, and let {sj}np

j=1 be an in-
duced basis of H0(X, Lp). Using formula (4.14) for the basis {eLξ/2psj}np

j=1, the coherent 
state projector Π

eLξ/2ps(x) at x ∈ X in the basis {sj}np

j=1 reads

e−Lξ/2pΠ
eLξ/2ps(x)e−Lξ/2p =

(
〈sj(x), sk(x)〉hp

e
Lξ/2ps

)np

j, k=1
. (4.30)

Using Proposition 4.5 together with formula (2.5), the fact that Π
eLξ/2ps(x) is a rank-1

projector implies
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Tr[eLξ/pμξ(s)] =
∫
X

Tr[Π
eLξ/2ps(x)] dν

eLξ/2ps(x) − Vol(dνs) = 0 . (4.31)

This proves the first assertion.
On the other hand, using Propositions 4.2 and 4.5, for all η ∈

√
−1 LieT , formula 

(2.5) implies

∫
X

σs(Lη) dνs = p
∂

∂t

∣∣∣
t=0

∫
X

φ∗
tη dνh = 0 . (4.32)

From formulas (1.7) and (4.30), this gives

Tr[eLξ/pLη μξ(s)] =
∫
X

σ
eLξ/2ps(Lη) dνeLξ/2ps −

Vol(dνs)
Tr[eLξ/p]

Futξp(η)

= − Vol(dνs)
Tr[eLξ/p]

Futξp(η) .

(4.33)

Finally, let K ⊂ Aut0(X) be a connected compact subgroup preserving Hs containing 
T ⊂ K in its center, and recall from Proposition 4.5 that hs ∈ Met+(L)K , and for any 
η ∈ LieK, we have ΠeLη s = Πs. Then using formulas (2.5), (4.17) and (4.30), in the 
identification (4.7) we get

e−Lημξ(s)eLη =
∫
X

e−Lξ/2pe−LηΠ
eLξ/2ps(x)eLηe−Lξ/2p dνs −

Vol(dνs)
Tr[eLξ/p]

Id

=
∫
X

e−Lξ/2pΠ
eLξ/2ps(φη(x))e−Lξ/2p dνs −

Vol(dνs)
Tr[eLξ/p]

Id

= μξ(s) ,

(4.34)

where we used a change of variable with respect to φη ∈ Aut0(X) to get the last line. 
This concludes the proof. �
5. Equivariant Berezin-Toeplitz quantization

In this Section, we fix a connected compact subgroup K ⊂ Aut0(X), and write T ⊂ K

for the identity component of its center. We will study the properties of the Berezin-
Toeplitz quantization of Section 2.3 with respect to the action of K. Let p ∈ N∗ be large 
enough so that the Kodaira map (2.28) is an embedding, and consider the setting or 
Section 2.3 for a K-invariant positive Hermitian metric hp ∈ Met+(Lp)K .
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5.1. Quantum channel

Recall that we write C∞(X, R)K for the space of K-invariant functions on X, and 
L (Hp)K for the space of Hermitian operators commuting with the action of K on Hp.

Lemma 5.1. The symbol and quantization maps introduced in Definition 2.10 restrict to 
linear maps σhp : L (Hp)K → C∞(X, R)K and Thp : C∞(X, R)K → L (Hp)K .

Proof. Following Remark 4.3, let sp ∈ B(H0(X, Lp))T be orthonormal with respect to 
L2(hp). As K preserves L2(hp) and as the coherent state projector of Definition 4.1 only 
depends on Hsp = L2(hp), we have ΠeLη sp = Πsp = Πhp for all η ∈ LieK. Proposition 4.5
then implies that σhp(A) ∈ C∞(X, R)K for all A ∈ L (Hp)K . This shows that the 
Berezin symbol restricts to a map σhp : L (Hp)K → C∞(X, R)K .

On the other hand, Proposition 4.5 shows that hp
sp ∈ Met+(Lp) is K-invariant, and 

formula (4.12) then implies that ρhp ∈ C∞(X, R)K . Thus for any η ∈ LieK and f ∈
C∞(X, R)K , we can use formula (4.17) and a change of variable with respect to φξ ∈
Aut0(X) to get

Thp(f) =
∫
X

f(φη(x)) Πhp(φη(x)) ρhp(φη(x))φ∗
η dνh(x)

=
∫
X

f(x) eLηΠhp(x)e−Lη ρhp(x) dνh(x) = eLηThp(f)e−Lη ,

(5.1)

so that Thp(f) ∈ L (Hp)K for all f ∈ C∞(X, R)K . This concludes the proof. �
From now on, we fix ξ ∈

√
−1LieT . Recall the scalar product (4.28) on the real vector 

space L (Hp)K � Herm(Cnp)K , and consider the scalar product L2(h, ξ, p) defined on 
any f, g ∈ C∞(X, R)K by

〈f, g〉L2(h,ξ,p) :=
∫
X

f g
σhp(eLξ/p) ρhp

Tr[eLξ/p]
dνh . (5.2)

The following result is the equivariant version of the duality Proposition 2.12 between 
Berezin symbol and Berezin-Toeplitz quantization.

Proposition 5.2. For any A ∈ L (Hp)K and f ∈ C∞(X, R)K , we have

〈Thp(f), A〉ξ
Tr[eLξ/p]

= 〈f, φ∗
ξ/2pσhp(A)〉L2(h,ξ,p) . (5.3)

Proof. Following Remark 4.3, let sp ∈ B(H0(X, Lp))T be orthonormal with respect 
to L2(hp). Then using Propositions 2.12, 4.4 and 4.5, for any A ∈ L (Hp)K and f ∈
C∞(X, R)K , we get
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Tr[eLξ/pAThp(f)] =
∫
X

σhp(eLξ/pA) ρhp dνh

=
∫
X

σ
eLξ/psp(A)σhp(eLξ/p) ρhp dνh

=
∫
X

φ∗
ξ/2p σhp(A)σhp(eLξ/p) ρhp dνh .

(5.4)

This gives the result. �
We can now introduce the main tool of this Section.

Definition 5.3. For any ξ ∈
√
−1 LieT , the Berezin-Toeplitz quantum channel relative to

ξ is the linear map defined by

E ξ
hp : L (Hp)K −→ L (Hp)K

A �−→ Thp

(
φ∗
ξ/2p σhp (A)

)
.

(5.5)

Proposition 5.2 the shows that the quantum channel relative to ξ ∈
√
−1LieT is a 

positive and self-adjoint operator acting on the real Hilbert space L (Hp)K endowed 
with the scalar product 〈·, ·〉ξ defined by formula (4.28).

5.2. Berezin transform

The goal of this section is to extend the results of [22] on the Berezin transform 
of Definition 2.13 to the equivariant setting of Section 5. For any ξ ∈

√
−1 LieT , we 

consider the linear isomorphisms φ∗
ξ : C∞(X, R)K → C∞(X, R)K by pullback with 

respect to φξ ∈ TC. The following basic result draws a link with the quantum channel of 
Definition 5.3.

Proposition 5.4. For any ξ ∈
√
−1LieT , the linear map

φ∗
ξ/2p Bhp : C∞(X,R)K −→ C∞(X,R)K (5.6)

is a positive and self-adjoint operator with respect to the scalar product L2(h, ξ, p) given 
by formula (5.2).

Furthermore, the positive spectrums of φ∗
ξ/2p Bhp and E ξ

hp coincide.

Proof. The fact that φ∗
ξ/2p Bhp is a self-adjoint and positive operator on C∞(X, R)K

with respect to the scalar product L2(h, ξ, p) is a straightforward consequence of Propo-
sition 5.2. Furthermore, this operator factorizes through the finite dimensional space 
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L (Hp)K , so that in particular, it is a compact operator with smooth kernel. This im-
plies that Spec(φ∗

ξ/2p Bhp) is discrete and contains a finite number of non-vanishing 
eigenvalues counted with multiplicity.

Let now f ∈ C∞(X, R)K be an eigenfunction of φ∗
ξ/2p Bhp with eigenvalue λ 
= 0. 

Then from Definition 2.13 and Definition 5.3, we have

E ξ
hp(Thp(f)) = Thp

(
φ∗
ξ/2p Bhp(f)

)
= λThp(f) , (5.7)

so that Thp(f) ∈ L (Hp)K is a non-vanishing eigenvector of E ξ
hp associated with the 

eigenvalue λ, since by definition σeLξ sp (Thp(f)) = λf 
= 0. This shows that the positive 

spectrums of φ∗
ξ/2p Bhp and E ξ

hp coincide. This concludes the proof. �
The following result is the analogue of Theorem 2.14 for the equivariant Berezin 

transform (5.6), where the role of the Riemannian Laplacian is played by the operator 
Δ(ξ)

h of Lemma 2.6.

Proposition 5.5. For any ξ ∈
√
−1 LieT and m ∈ N, there exists Cm > 0 such that for 

any f ∈ C∞(X, C)K and all p ∈ N∗, we have

∣∣∣φ∗
ξ/2p Bhpf − f + p−1Δ(ξ)

h f
∣∣∣
Cm

� Cm

p2 |f |Cm+6 . (5.8)

Furthermore, there exists l ∈ N such that the constant Cm > 0 can be chosen uniformly 
for ξ ∈

√
−1 LieT in a compact set and h ∈ Met+(L) in a bounded subset in C l-norm.

Proof. Using Theorem 2.14, we get for any m ∈ N a constant Cm > 0 such that for any 
f ∈ C∞(X, C) and all p ∈ N∗, we have∣∣∣∣Bhpf − f + Δh

4πpf
∣∣∣∣
Cm

� Cm

p2 |f |Cm+4 . (5.9)

On the other hand, considering the Taylor expansion of φξ/2p in p−1, we get for any 
m ∈ N a constant Cm > 0 such that for any f ∈ C∞(X, R) and all p ∈ N∗,∣∣∣∣φ∗

ξ/2p f − f − df.ξ

2p

∣∣∣∣
Cm

� Cm

p2 |f |Cm+2 . (5.10)

By definition (2.21) of the operator Δ(ξ)
h and the fact that df.ξ = 2df.ξ1,0 for f ∈

C∞(X, C)K and ξ ∈
√
−1 LieT , this gives the result. �

Let ε0 > 0 be smaller than the injectivity radius of (X, gTX
h ), fix x0 ∈ X, and let 

Z = (Z1, ..., Z2d) ∈ R2d with |Z| < ε0 be geodesic normal coordinates around x0, where 
| · | is the Euclidean norm of R2d. For any K(·, ·) ∈ C∞(X × X, C), we write Kx0(·, ·)
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for its image in these coordinates, and we write |Kx|Cm(X) for the local Cm-norm with 
respect to x ∈ X.

Let dX be the Riemannian distance on (X, gTX
h ), and recall as in the proof of Propo-

sition 5.4 that Bhp admits a smooth Schwartz kernel, for all p ∈ N∗. The main tool of 
this Section is the following asymptotic expansion as p → +∞ of this Schwartz kernel, 
which follows from [10, Th. 4.18’]. Let | · |Cm denote the local Cm norm on local sections 
of Lp � (Lp)∗. In the following statement, the estimate O(p−∞) means O(p−k) in the 
usual sense as p → +∞, for all k ∈ N.

Theorem 5.6. [22, Th. 3.7] For any m , k ∈ N, ε > 0, there is C > 0 such that for all 
p ∈ N∗ and x, y ∈ X satisfying dX(x, y) > ε, we have

|Bhp(x, y)|Cm � Cp−k . (5.11)

For any m, k ∈ N, there is N ∈ N, C > 0 such that for any x0 ∈ X, |Z|, |Z ′| < ε0 and 
for all p ∈ N∗, we have

∣∣∣p−dBhp,x0(Z,Z ′) −
k−1∑
r=0

p−r/2Jr,x0(
√
pZ,

√
pZ ′) exp(−πp|Z − Z ′|2)

∣∣∣
Cm(X)

� Cp−
k
2 (1 + √

p|Z| + √
p|Z ′|)N exp(−√

p|Z − Z ′|/C) + O(p−∞) , (5.12)

where Jr,x0(Z, Z ′) are a family of polynomials in Z, Z ′ ∈ R2n of the same parity as 
r ∈ N, depending smoothly on x0 ∈ X. Furthermore, for any Z, Z ′ ∈ R2n we have

J0,x0(Z,Z ′) = 1 and J1,x0(Z,Z ′) = 0 . (5.13)

Finally, for any m ∈ N, there exists l ∈ N such that the estimate (5.12) is uniform for 
h ∈ Met+(L)K in a bounded subset in C l-norm.

5.3. Spectral asymptotics

Fix h ∈ Met+(L)K , and write 〈·, ·〉L2 for the associated L2-Hermitian product on 
C∞(X, C)K , defined by formula (2.22) for ξ = 0. We write ‖ · ‖L2 for the associated 
norm, and L2(X, C)K for the induced completion of C∞(X, C)K . In the notations of 
Section 2.2, the Riemannian Laplacian Δh is then an elliptic self-adjoint operator acting 
on L2(X, C)K , and we write

0 = λ0 < λ1 � λ2 � · · · � λk � . . . , (5.14)

for the increasing sequence of its eigenvalues. For all j ∈ N, let ej ∈ C∞(X, C)K be the 
normalized eigenfunction associated with λj , so that ‖ej‖L2 = 1 and Δej = λjej . For 
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any F : R → R bounded, we define the bounded operator F (Δ) acting on L2(X, C)K
by the formula

F (Δ)f =
+∞∑
i=0

F (λj)〈f, ej〉L2ej . (5.15)

In particular we can consider its associated heat operator e−tΔh acting on C∞(X, C)K , 
for all t � 0. For any m ∈ 2N, write ‖ · ‖Hm for the norm defined for all f ∈ C∞(X, C)K
by

‖f‖Hm := ‖Δm/2
h f‖L2 + ‖f‖L2 . (5.16)

By the classical Sobolev embedding theorem and the elliptic estimates for Δh, there 
exists k ∈ N such that for any m ∈ 2N, there is Cm > 0 such that

|f |Cm � Cm‖f‖Hm+k , (5.17)

for all f ∈ C∞(X, C)K . Furthermore, there exists l ∈ N such that the constant Cm >

0 can be chosen uniformly for h ∈ Met+(L)K in a bounded subset in C l-norm. By 
convention, we set ‖f‖H0 := ‖f‖L2 .

We then have the following result, which is the analogue of [22, Prop. 3.9] for the 
equivariant Berezin transform (5.6).

Proposition 5.7. For any m ∈ 2N and any ξ ∈
√
−1LieT , there exists Cm > 0 such that 

for any f ∈ C∞(X, C)K and all p ∈ N∗, we have∥∥∥(e− Δh
4πp − eθh(ξ)/2φ∗

ξ/2p Bhpe−θh(ξ)/2
)
f
∥∥∥
Hm

� Cm

p
‖f‖Hm . (5.18)

Furthermore, there exists l ∈ N such that the constant Cm > 0 can be chosen uniformly 
for ξ ∈

√
−1LieT in a compact set and h ∈ Met+(L)K in a bounded subset in C l-norm.

Proof. In this proof, we use the notation O(|W |k) ∈ R2n or R in the usual sense as 
W ∈ R2n goes to 0, for any k ∈ N, and write 〈·, ·〉 for the Euclidean product of R2n.

First note that the operator

B̃p := eθh(ξ)/2φ∗
ξ/2p Bhpe−θh(ξ)/2 (5.19)

has a smooth kernel given for all x, y ∈ X by

B̃p(x, y) = eθh(ξ)/2(x)e−θh(ξ)/2(y) Bhp(φξ/2p(x), y) . (5.20)

Recall formula (5.12) for the asymptotic expansion as p → +∞ of the Berezin transform 
Bhp in geodesic coordinates Z, Z ′ ∈ R2n with |Z|, |Z ′| < ε0 around x0 ∈ X. For 
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all ξ ∈
√
−1LieT in a compact set, considering the Taylor expansion of φξ/2p(Z) as 

p−1 → 0 and |Z| → 0, we get

exp(−πp |φξ/2p(Z) − Z ′|2)
= exp(−πp|Z − Z ′|2 − π〈ξx0 , Z − Z ′〉 + 〈O(|Z|) + p−1O(|Z|), Z − Z ′〉)

= exp(−πp|Z − Z ′|2)
(
1 − πp−1/2〈ξx0 ,

√
p(Z − Z ′)〉

+ p−1〈O(|√pZ|) + p−1O(|√pZ|),√p(Z − Z ′)〉
)
.

(5.21)

On the other hand, recall from Proposition 2.2 that the imaginary part of the holomorphy 
potential equation (2.7) gives 2πιJξωh = −dθh(ξ). Using definition (2.2) for 〈·, ·〉 := gTX

h,x0
, 

we get the following Taylor expansions as Z → 0,

eθh(ξ)/2(Z)e−θh(ξ)/2(Z ′)

= 1 + dθh(ξ).(Z − Z ′)/2 + (O(|Z|) + O(|Z ′|))2

= 1 + π〈ξ, Z − Z ′〉 + (O(|Z|) + O(|Z ′|))2

= 1 + p−1/2π〈ξ,√p(Z − Z ′)〉 + p−1(O(|√pZ|) + O(|√pZ ′|))2 .

(5.22)

Multiplying the estimates (5.21) and (5.22) gives

eθh(ξ)/2(Z)e−θh(ξ)/2(Z ′) exp(−πp|φξ/2p(Z) − Z ′|2)
= exp(−πp|Z − Z ′|2)(1 + p−1O(|√pZ|) + p−1O(|√pZ ′|)) , (5.23)

so that the coefficient of order p−1/2 vanishes. Plugging the expansion (5.12) in formula 
(5.20) for the Schwartz kernel of B̃p, we see that it also satisfies Theorem 5.6, with first 
coefficients satisfying (5.13).

Setting now Rp := e
Δ

4πp −B̃p, and using the classical small-time asymptotic expansion 
of the heat kernel, as given for example in [1, Th. 2.29], and by (5.12), we see that its 
Schwartz kernel Rp(·, ·) with respect to dvX satisfies Rp(x, y) = O(p−∞) for all x, y ∈ X

satisfying dX(x, y) > ε0, and we get for any m ∈ N a constant C > 0 and N ∈ N such 
that

|Rp,x0(Z,Z ′)|Cm(X)

� Cp−1(1 + √
p|Z| + √

p|Z ′|)N exp(−√
p|Z − Z ′|/C) + O(p−∞) . (5.24)

Following the proof of [22, Prop. 3.9], this readily implies that for any m ∈ 2N, there is 
a constant Cm > 0 such that for all f ∈ C∞(X, R),

‖Rp(f)‖Hm � Cm ‖f‖Hm . (5.25)

p
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The uniformity of Cm > 0 with respect to h ∈ Met+(L)K comes from the uniformity of 
the small-time asymptotic expansion of the heat kernel with respect to the Riemannian 
metric together with the uniformity in Theorem 5.6. This gives the result. �

Let us now write ‖ · ‖L2(h,ξ) and ‖ · ‖L2(h,ξ,p) for the norms associated with the L2-
Heermitian products (2.22) and (5.2) respectively. Using Theorem 2.9, Theorem 2.14
and Proposition 3.2, we get a constant C > 0, uniform for ξ ∈

√
−1LieT in a compact 

set and h ∈ Met+(L)K in a bounded subset in C l-norm for some l ∈ N, such that(
1 − C

p

)
‖ · ‖L2(h,ξ) � ‖ · ‖L2(h,ξ,p) �

(
1 + C

p

)
‖ · ‖L2(h,ξ) . (5.26)

Proposition 5.7 implies the following key lemma, which is an analogue of [22, Lem. 3.10]
for the equivariant Berezin transform (5.6).

Lemma 5.8. For any fixed L > 0, consider sequences {fp ∈ C∞(X, C)K}p∈N∗ and {μp ∈
Spec(φ∗

ξ/2p Bhp)}p∈N∗ , such that p|1 − μp| < L for all p ∈ N∗ and

‖fp‖L2(h,ξ,p) = 1 and φ∗
ξ/2p Bhp(fp) = μpfp . (5.27)

Then for all m ∈ 2N, there exists CL,m > 0 such that for all p ∈ N∗, we have

‖fp‖Hm � CL,m , (5.28)

not depending on ξ ∈
√
−1 LieT in a compact set and h ∈ Met+(L)K in a bounded 

subset in C l-norm for some l ∈ N.

Proof. Let {fp ∈ C∞(X, C)K}p∈N∗ be a sequence satisfying (5.27) as above, and for all 
p ∈ N∗, set

‖ · ‖p := ‖e−θh(ξ)/2 · ‖L2(h,ξ,p) and f̃p := eθh(ξ)/2fp . (5.29)

In particular, we have ‖f̃p‖p = 1 and B̃p(f̃p) = μpf̃p for all p ∈ N∗, for the operator B̃p

defined by formula (5.19), and the estimate (5.26) implies the estimate (5.28) for m = 0.
By induction on m ∈ 2N, assume now that (5.28) is satisfied for m − 2. Write

p(e−
Δh
4πp − B̃p)f̃p = p(1 − μp)f̃p − p(1 − e−

Δh
4πp )f̃p

= p(1 − μp)f̃p − ΔhF (Δh/p)f̃p ,
(5.30)

where the bounded operator F (Δh/p) acting on L2(X, C)K is defined as in (5.15) for 
the continuous function F : R → R given for any s ∈ R∗ by F (s) = 4π(1 − e−s/4π)/s. 
As |p(1 −μp)| < L for all p ∈ N∗, by Proposition 5.7 and formula (5.16) for ‖ · ‖Hm , this 
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gives a constant Cm > 0, uniform h ∈ Met+(L)K in a bounded subset in C l-norm for 
some l ∈ N, such that

‖F (Δh/p)f̃p‖Hm � Cm‖f̃p‖Hm−2 . (5.31)

On the other hand, note that by hypothesis, we have μp → 1 as p → +∞. Using 
Proposition 5.7 again, we then get εm > 0 and pm ∈ N∗, uniform h ∈ Met+(L)K in a 
bounded subset in C l-norm, such that for all p > pm,

‖F (Δh/p)f̃p‖H2m � ‖F (Δh/p)f̃p + (B̃p − e−
Δh
4πp )f̃p‖Hm − ‖(B̃p − e−

Δh
4πp )f̃p‖Hm

� inf
s>0

{F (s) + μp − e−s/4π} ‖f̃p‖Hm − Cmp−1‖f̃p‖Hm

� εm‖f̃p‖Hm .

(5.32)

Hence by (5.31), we get a constant CL,m > 0, uniform in h ∈ Met+(L)K in a bounded 
subset in C l-norm, such that for all p ∈ N∗, we have ‖f̃p‖Hm � CL,m, which gives (5.28)
by (5.29). �

Using Lemma 2.6, write

0 = λ0(h, ξ) < λ1(h, ξ) � · · · � λk(h, ξ) � . . . (5.33)

for the increasing sequence of eigenvalues of Δ(ξ)
h , and using Proposition 5.4, write

γ0(hp, ξ) � γ1(hp, ξ) � · · · � γ1(hp, ξ) � · · · � 0 (5.34)

for the decreasing sequence of eigenvalues of φ∗
ξ/2p Bhp . The following result is the ana-

logue of [22, Th. 3.1] for the equivariant Berezin transform (5.6), and is the analytic 
basis of our proof of Theorem 1.1.

Theorem 5.9. For every integer k ∈ N, there exists a constant Ck > 0 such that for any 
p ∈ N∗, ∣∣1 − γk(hp, ξ) − p−1λk(h, ξ)

∣∣ � Ckp
−2 . (5.35)

Moreover, there exists l ∈ N such that the constant Ck > 0 can be chosen uniformly for 
ξ ∈

√
−1LieT in a compact set and h ∈ Met+(L)K in a bounded subset in C l-norm.

Proof. By Proposition 5.5 and by the Sobolev estimate (5.17), there is m ∈ 2N, l ∈ N

and a constant C > 0 such that for any f ∈ C∞(X, C)K ,∥∥∥p(1 − φ∗
ξ/2pBhp)f − Δ(ξ)

h f
∥∥∥ � Cp−1‖f‖Hm , (5.36)

L2(h,ξ)
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and the estimate (5.26) shows that equation (5.36) also holds in the norm ‖ ·‖L2(h,ξ,p). Let 
now j ∈ N be fixed, and let ej ∈ C∞(X, C) satisfy Δ(ξ)

h ej = λj(h, ξ)ej and ‖ej‖L2 = 1. 
We then get C > 0 such that for all p ∈ N∗,∥∥∥p(1 − φ∗

ξ/2pBp)ej − λj(h, ξ)ej
∥∥∥
L2(h,ξ,p)

� Cp−1 . (5.37)

Let mj ∈ N be the multiplicity of λj(h, ξ) as an eigenvalue of Δ(ξ)
h . Then the estimate 

(5.37) for all eigenfunctions of Δ(ξ)
h associated with λj(h, ξ) gives a constant Cj > 0 such 

that for all p ∈ N∗,

#
(
Spec

(
p(1 − φ∗

ξ/2pBp)
)
∩
[
λj(h, ξ) − Cjp

−1, λj(h, ξ) + Cjp
−1]) � mj . (5.38)

Conversely, fix L > 0 and let {fp}p∈N∗ be the sequence of normalized eigenfunctions 
considered in Lemma 5.8. Then by (5.36), we get C > 0 such that∥∥∥p(1 − μp)fp − Δ(ξ)

h fp

∥∥∥
L2(h,ξ)

� Cp−1 . (5.39)

In particular, we get that

dist
(
p(1 − μp),Spec Δ(ξ)

h

)
� Cp−1 , (5.40)

showing that all eigenvalues of p(1 − φ∗
ξ/2pBp) bounded by some L > 0 have to be 

included in the left hand side of (5.38).
Let us finally show that (5.38) is an equality for p ∈ N∗ big enough. Let l ∈ N with 

l � mj be such that for all p ∈ N∗, there exists an orthonormal family {fk,p}1�k�l of 
eigenfunctions of φ∗

ξ/2pBp for ‖ · ‖l2(h,ξ,p) with associated eigenvalues {μk,p ∈ R}1�k�l

satisfying

p(1 − μk,p) ∈ [λj(h, ξ) − Cp−1, λj(h, ξ) + Cp−1] , for all 1 � k � l . (5.41)

By Lemma 5.8 and (5.26), the compact inclusion of the Sobolev space H4 in H2 gives 
a subsequence of {fk,p}p∈N∗ converging to a function fk in H2-norm, for all 1 � k � l. 
In particular, using (5.26) again, the family {fk}1�k�l is orthonormal in L2(h, ξ) and 
satisfies Δ(ξ)

h fk = λj(h, ξ)fk for all 1 � k � l by (5.39). By definition of the multiplicity 
mj ∈ N of λj(h, ξ), this forces l = mj . We thus get

#
(
Spec

(
p(1 − φ∗

ξ/2pBp)
)
∩
[
λj(h, ξ) − Cp−1, λj(h, ξ) + Cp−1]) = mj . (5.42)

By the uniformity of the constants in Proposition 5.7, Lemma 5.8, (5.17), (5.26), and by 
the smooth dependance of the eigenfunctions of φ∗

ξ/2p Bhp and Δ(ξ)
h with respect to the 

initial data, we get the result. �
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6. Proof of the main theorem

In this Section, we use the preliminary results of all previous Sections to establish 
Theorem 1.1. In Section 6.1, we will show how to use the results of Section 2.2 on 
the differential operator of Tian and Zhu and the results of Section 3.2 on the quan-
tized Futaki invariants (1.7) to construct approximately balanced metrics from a given 
Kähler-Ricci soliton. The heart of the proof is in Section 6.2, where we use these ap-
proximately balanced metrics to establish existence and convergence in Theorem 1.1, 
applying the tools of Section 5 on the moment map picture of Section 4.3. Finally, we 
establish uniqueness in Section 6.3 using Proposition 4.7 and an energy functional for 
the relative moment map.

Throughout the whole section, we will assume given a positive Hermitian metric 
h∞ ∈ Met+(L) such that ωh∞ ∈ Ω2(X, R) is a Kähler-Ricci soliton with respect to 
ξ∞ ∈ Lie Aut(X) in the sense of (1.2). We write K ⊂ Aut0(X) for the identity component 
of the subgroup of isometries of (X, gTX

h∞
), and T ⊂ K for the identity component of its 

center, so that h∞ ∈ Met+(L)T and ξ∞ ∈
√
−1LieT .

6.1. Approximately balanced metrics

The following semi-classical estimate on the Berezin symbol is inspired by [13, Lem. 24, 
(35)-(35’)]. We provide a proof that does not make use of any moment map construction. 
Write ‖ · ‖tr for the trace norm on End(H0(X, Lp)).

Lemma 6.1. For any m ∈ N and h ∈ Met+(L)T , there exists a constant Cm > 0 such 
that for any A ∈ L (Hp)T and all p ∈ N∗, we have

|σhp(A)|Cm � Cm pn+m
2 ‖A‖tr . (6.1)

Furthermore, there exists l ∈ N such that the constant Cm > 0 can be chosen uniformly 
for h ∈ Met+(L)T in a bounded subset in C l-norm.

Proof. Using the Sobolev embedding theorem as in [29, Lem. 2], we get for any m ∈ N

and h ∈ Met+(Lp) a constant Cm > 0 such that for all p ∈ N∗ and any holomorphic 
section s ∈ H0(X, Lp), we have

|s|Cm(hp) � Cm p
n+m

2 ‖s‖L2(hp) , (6.2)

where | · |Cm(hp) denotes the Cm-norm with respect to the Chern connection of (Lp, hp). 
Replacing hp by efhp with ‖f‖Cm < C for some fixed C > 0 in (6.2), we readily see 
that Cm > 0 can be chosen uniformly for all hp ∈ Met+(Lp)T in a subset bounded in 
Cm-norm.
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Let now {sj}np

j=1 be an orthonormal basis for L2(hp), and for A ∈ Herm(Cnp)T , write 
(Ajk)

np

j, k=1 ∈ Herm(Cnp) for its matrix in this basis. Using formulas (4.12) and (4.14), 
we know that

σhp(A) = ρ−1
hp

np∑
j, k=1

Ajk〈sk, sj〉hp . (6.3)

On the other hand, using Theorem 2.9, we get C > 0 such that

|ρ−1
hp |C 0 = min

x∈X

(
pn

ωn
h

dνh n! + O(pn−1)
)−1

� Cp−n . (6.4)

Using the Leibniz rule on successive derivatives of ρ−1
hp

and by Theorem 2.9 again, this 
implies the existence of C ′

m > 0, uniform in the C l-norm of hp for some l ∈ N, such that 
for all p ∈ N∗, we have

|ρ−1
hp |Cm � C ′

mp−n . (6.5)

Then using the estimates (6.2), (6.5) and the fact, following from Theorem 2.9 and 
formula (2.39), that np � Cpn as p → +∞ for some C > 0, we can use Cauchy-Schwartz 
inequality on the trace norm to get for all m ∈ N a uniform constant C ′ > 0, such that 
for all A ∈ Herm(Cnp)T and all p ∈ N∗,

|σhp(A)|Cm �
∣∣ρ−1

hp

∣∣
Cm

np∑
j, k=1

|Ajk〈sk, sj〉hp |Cm

� C ′
mp−n‖A‖tr

√√√√ np∑
j, k=1

m∑
r,l=1

(
m

r

)(
m

l

)
|sk|C r(hp)|sj |Cm−r(hp)|sk|C l(hp)|sj |Cm−l(hp)

� C ′p−npn+m
2 ‖A‖tr np � C ′Cpn+m

2 ‖A‖tr .
(6.6)

This gives the result. �
The following result is an extension of the analogous result of Donaldson [13, Th. 26]

to the case of general Aut(X), and is an anticanonical analogue of the result of Sano and 
Tipler in [39, Th. 5.5]. The proof closely follows their strategy.

Proposition 6.2. There exist K-invariant functions fr ∈ C∞(X, R)T for all r ∈ N, such 
that for every k, m ∈ N, there exists a constant Ck,m > 0 such that all p ∈ N∗ big 
enough, the T -invariant positive Hermitian metric

hk(p) := exp
(

k−1∑ 1
pr

fr

)
h∞ ∈ Met+(Lp)K , (6.7)
r=1
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have associated Rawnsley function ρhp
k(p) ∈ C∞(X, R) satisfying

∣∣∣∣∣ ρhp
k(p) σhp

k(p)(eLξp/p) − Tr[eLξp/p]
Vol
(
dνhk(p)

) ∣∣∣∣∣
Cm

� Ck,mpn−k , (6.8)

for the sequence {ξp ∈
√
−1 LieT}p∈N∗ of Corollary 3.4.

Proof. In this proof, the notation O(p−k) for some k ∈ N is taken to be in its usual 
sense, uniformly in Cm-norm for all m ∈ N and uniform the C l-norm of h ∈ Met+(L)
for some l ∈ N.

Fix hp ∈ Met+(Lp)K , and consider the setting of Section 5. Using Proposition 3.1 and 
the definition of the exponential of an operator, we know that for any ξ ∈ Lie Aut(X), 
we have eLξ/p = Id + |ξ| O(1), so that Proposition 3.6 implies that for any k ∈ N, we 
have eLξp/p = eLξ∞/p

∏k
j=1 e

L
p−jξ(j)/p +O(p−k−1). We can then use Proposition 3.2 and 

Theorem 2.11 to get functions η(j)
ξ ∈ C∞(X, C) for all j ∈ N, depending smoothly on 

ξ ∈
√
−1LieT , such that for any k ∈ N, we have

eLξp/p = Thp

(
eθh(ξp)

)
+

k∑
j=1

p−j Thp(η(j)
ξp

) + O(p−k−1) . (6.9)

Write Rk(p) ∈ L (Hp) for the remainder in (6.9), so that ‖Rk(p)‖op = O(p−k−1). Using 
the fact np = O(pn) by Theorem 2.9 and formula (2.39), Cauchy-Schwartz inequality 
then implies that ‖Rk(p)‖tr = O(pn

2 −k−1). Using now Theorem 2.14, we get functions 
gj(h) ∈ C∞(X, R) for all j ∈ N, depending smoothly in the successive derivatives of 
h ∈ Met+(L), such that for any k0 ∈ N, Lemma 6.1 applied to the expansion (6.9) for 
k > k0 + (3n + m)/2 gives

σhp(eLξp/p) = Bhp(eθh(ξ∞)) +
k∑

j=1
p−j Bhp(η(j)

ξp
) + σhp(Rk(p))

= eθh(ξ∞) +
k0∑
j=1

p−j gj(h) + O(p−k0−1) .

(6.10)

Comparing with Theorem 2.9, and using Proposition 4.5, we get K-invariant functions 
fj(h) ∈ C∞(X, R)K for all j ∈ N, depending smoothly in the successive derivatives of 
h ∈ Met+(L), such that for any k ∈ N, we have

p−n σhp(eLξp/p) ρhp = eθh(ξ∞)ωn
h

n! dνh
+

k∑
p−j fj(h) + O(p−k−1) . (6.11)
j=1
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Via the characterization (2.20), we see that the first coefficient of (6.11) is constant if 
and only if h ∈ Met+(L) is a Kähler-Ricci soliton with respect to ξ∞. Integrating both 
sides against dνh and using formula (4.23), this implies the result for k = 1.

Recall that Δh denotes the scalar Riemannian Laplacian of (X, gTX
h ). Using the vari-

ation formula (2.3) for the anticanonical volume form and a classical formula in Kähler 
geometry, for any f ∈ C∞(X, R) we get

∂

∂t

∣∣∣
t=0

ωn
etfh∞

dνetfh∞

=
(

1
4πΔh∞f − f

)
ωn
h∞

dνh∞

. (6.12)

For any ξ ∈
√
−1LieT and h ∈ Met+(L)K , recall the operator Δ(ξ)

h acting on 
C∞(X, R)K defined in Lemma 2.6. Using Proposition 2.2 on holomorphy potentials 
and Theorem 2.9, the expansion (6.11) implies that for all k ∈ N and f ∈ C∞(X, R)T , 
we have

p−n σ(ep−kfh)p(e
Lξp/p) ρ(ep−kfh)p

= eθh(ξ∞)ωn
h

n! dνh
+

k−1∑
j=1

p−j fj(h) + p−k
(
fk(h) + Δ(ξ∞)

h∞
f − f

)
+ O(p−k−1) . (6.13)

On the other hand, using Propositions 2.12 and 3.1 and the definition (1.7) of the 
quantized Futaki invariant, Corollary 3.4 implies that for any h ∈ Met+(L) and all 
η ∈ Lie Aut(X), we have

∫
X

θh(η)σhp(eLξp/p) ρhp dνh =
Futξpp (η)
p + 1 = 0 . (6.14)

Using Proposition 2.7, this implies that the coefficients in the expansion (6.11) for h∞
satisfy

fj(h∞) ∈
(
Ker
(
Δ(ξ∞)

h∞
− Id
))⊥

for all j ∈ N , (6.15)

for the L2-scalar product L2(h, ξ) on C∞(X, R)K , defined by formula (2.22) using the 
characterization (2.20) of Kähler-Ricci solitons. Thus for all j ∈ N, there exists a func-
tion fj ∈ C∞(X, R)K satisfying fj(h∞) = fj − Δ(ξ∞)

h∞
fj . Taking h1(p) := ef1/ph∞ ∈

Met+(L)K , the second coefficient of the expansion (6.13) with k = 2 vanishes, and in-
tegrating both sides against dνh1(p) gives the result for k = 2 via formula (4.23) as 
above.

Let us now assume that for some k ∈ N, we have positive Hermitian metrics hk(p) ∈
Met+(L)K as in (6.7) satisfying

σhk(p)(eLξp/p)ρhp
k(p) =

eθh∞ (ξ∞)ωn
h∞ + O(p−k) . (6.16)
n! dνh∞
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As we have hk(p) → h∞ smoothly as p → +∞ by hypothesis, we can again apply 
Theorem 2.9 to get expansion (6.11) for hp

k(p), and taking the Taylor expansion as 
p → +∞ of the coefficients fr(hk(p)) for all 1 � r � k + 1, we then get for any 
f ∈ C∞(X, R)K ,

p−n σep−kfh(eLξp/p)ρ(ep−kfh)p

=
eθh∞ (ξ∞)ωn

h∞

n! dνh∞

+ p−k
(
fk(h∞) + Δ(ξ∞)

h∞
f − f

)
+ O(p−k−1) . (6.17)

Taking hk+1(p) := efk/p
k

hk(p) ∈ Met+(Lp)K for all p ∈ N∗, where fk ∈ C∞(X, R)K

satisfies fk(h∞) = fk −Δ(ξ∞)
h∞

fk thanks to (6.15), we get the result for k+ 1 via formula 
(4.23) as above. This gives the result for general k ∈ N by induction. �

For any k ∈ N and p ∈ N∗ big enough, consider the positive Hermitian metrics 
hk(p) ∈ Met+(L)K constructed in Proposition 6.2 and let sk(p) ∈ B(H0(X, Lp))T be 
orthonormal with respect to L2(hp

k(p)). The following Lemma shows that these metrics 
indeed approximate the Kähler-Ricci soliton.

Lemma 6.3. For any k, k0, m ∈ N with k � k0 > n + 1 + m/2, there exists C > 0 such 
that for all p ∈ N∗ and any B ∈ Herm(Cnp)T with ‖B‖tr � C−1p−k0 , we have

∣∣∣ω
eBe

Lξp
/2psk(p) − ωh∞

∣∣∣
Cm

� C

p
,∣∣∣∣∣dνeBe

Lξp
/2psk(p)

dνhk(p)
−

Vol(dνeBsk(p))
Vol(dνhk(p))

∣∣∣∣∣
C 0

� Cp−k0−1 ,

(6.18)

and C−1 < Vol(dνeBsk(p)) < C.

Proof. Using Propositions 4.2 and 4.4, we know that for all k ∈ N, p ∈ N∗ and B ∈
Herm(Cnp)T , we have

hp
k(p) = ρhp

k(p) hsk(p) = ρhp
k(p) σhp

k(p)(eLξp/p)hp

e
Lξp

/2psk(p)

= ρhp
k(p) σhp

k(p)(eLξp/p)σ
e
Lξp

/psk(p)(e
2B)hp

eBe
Lξp

/2psk(p)
.

(6.19)

By definition of the Kähler form (1.1), we then get
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ω
eBe

Lξp
/psk(p) = ωhk(p) −

√
−1

2πp ∂∂ log σ
e
Lξp

/psk(p)

(
e2B)

−
√
−1

2πp ∂∂ log
(
ρhp

k(p)σhp
k(p)(eLξp/p)

)
= ωhk(p) −

√
−1

2πp ∂∂ log
(
1 + σ

e
Lξp

/psk(p)

(
e2B − Id

))

−
√
−1

2πp ∂∂ log

⎛⎝1 +

⎛⎝Vol(dνhk(p))

Tr
[
eLξp/p

] ρhp
k(p)σhp

k(p)(eLξp/p) − 1

⎞⎠⎞⎠ .

(6.20)

Recall from Propositions 3.2 and 3.6 that C−1pn < Tr
[
eLξp/p

]
< Cpn for some C > 0, 

while Vol(dνhk(p)) → Vol(dνh∞) as p → +∞ by definition (6.7) of hk(p). Then by 
Lemma 6.1 and Proposition 6.2, we can take the Taylor expansion as p → +∞ of 
formula (6.20) to get that for any k, k0, m ∈ N with k � k0 > n + 1 +m/2, there exists 
C > 0 such for all B ∈ Herm(Cnp) with ‖B‖ξp � C−1p−k0 , we have

∣∣∣ω
eBe

Lξp
/psk(p) − ωhk(p)

∣∣∣
Cm−2

� Cp−k0−1 . (6.21)

By formula (6.7) for hk(p) and the corresponding formula for ωhk(p) as in (6.20), this 
implies the first inequality of Lemma 6.3.

Let us now establish the second inequality of Lemma 6.3. For any p ∈ N∗ and B ∈
Herm(Cnp), formula (2.3) and (6.19) give

log
dν

eBe
Lξp/p sk(p)

dνhk(p)
− 1

p
log

Vol(dνhk(p))

Tr
[
eLξp/p

]
= −1

p
log

⎛⎝Vol(dνhk(p))

Tr
[
eLξp/p

] ρhp
k(p)

⎞⎠− 1
p

log σ
e
Lξp/p sk(p)(e

2B) . (6.22)

Taking the Taylor expansion as p → +∞ of the right hand side of (6.22) in the same way 
as we did to deduce (6.21) from (6.20), for any k, k0 ∈ N with k � k0 > n +1 +m/2, we get 
a constant C > 0 such that for all p ∈ N∗ and all B ∈ Herm(Cnp) with ‖B‖tr � C−1p−k0 , 
we have ∣∣∣∣∣∣

dν
eBe

Lξp
/psk(p)

dνhk(p)
− 1

p
log

Vol(dνhk(p))

Tr
[
eLξp/p

]
∣∣∣∣∣∣
C 0

� Cp−k0−1 . (6.23)

Taking the integral of both sides against the probability measure dνhk(p)/ Vol(dνhk(p)), 
we see that there is C > 0 such that the constants Vp > 0 for all p ∈ N∗ satisfy
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∣∣∣∣∣∣
Vol
(
dν

eBe
Lξp

/psk(p)

)
Vol(dνhk(p))

− 1
p

log
Vol(dνhk(p))

Tr
[
eLξp/p

]
∣∣∣∣∣∣ < Cp−k0−1 . (6.24)

Using the fact from Proposition 4.5 and formula (2.5) that Vol(dνs) = Vol(dνeLξ s) for all 
s ∈ B(H0(X, Lp))T and ξ ∈

√
−1 LieT , we get the second inequality of (6.18) by com-

bining inequalities (6.23) and (6.24). The last statement then follows from the inequality 

(6.24), recalling that C−1pn < Tr
[
eLξp/p

]
< Cpn and Vol(dνhk(p)) → Vol(dνh∞) as 

p → +∞, so that the second term of the left hand side of (6.24) goes to 0 as p → +∞. 
This concludes the proof. �
6.2. Moment map picture and existence

The goal of this Section is to give a proof of existence and convergence in Theorem 1.1. 
In order to do so, it will be convenient to introduce some extra notations. Recall the 
setting of Section 4.1, and write Prod(H0(X, Lp))K for the space of K-invariant Her-
mitian inner products on H0(X, Lp). Given a fixed basis s ∈ B(H0(X, Lp))T inducing 
Hs ∈ Prod(H0(X, Lp))K , consider the induced identification H0(X, Lp) � Cnp . Via this 
identification, write GL(Cnp)K ⊂ GL(Cnp)T for the group of invertible endomorphisms 
commuting with the induced action of K on Cnp , and write U(np)K ⊂ GL(Cnp)K

for the subgroup of unitary matrices commuting with the action of K. The action of 
G ∈ GL(Cnp)K on s induces again a K-invariant product HGs ∈ Prod(H0(X, Lp))K , 
and as for (4.7), we have an identification

L (H0(X,Lp), HGs)K � Herm(Cnp)K , (6.25)

where Herm(Cnp)K ⊂ Herm(Cnp)T is the space of Hermitian matrices commuting with 
the induced action of K on Cnp . Note that the second statement of Proposition 4.10
precisely says that μξ(Gs) ∈ Herm(Cnp)K .

Our strategy for the proof of Theorem 1.1 is based on the following fundamental 
link between the anticanonical moment map of Definition 4.8 and the Berezin-Toeplitz 
quantum channel of Definition 5.3. Following Remark 4.3, let hp ∈ Met+(Lp)K be a 
K-invariant positive Hermitian metric, let sp ∈ B(H0(X, Lp))T be orthonormal with 
respect to L2(hp), and consider the induced identification (6.25). By Proposition 4.10, 
for any ξ ∈

√
−1 LieT and A ∈ Herm(Cnp)K we have

Dspμξ(A) := ∂

∂t

∣∣∣
t=0

μξ(etAsp) ∈ Herm(Cnp)K . (6.26)

Let 〈·, ·〉ξ be the scalar product (4.28) on Herm(Cnp)K , and write ‖ ·‖ξ for the associated 
norm.
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Proposition 6.4. Assume that hp ∈ Met+(Lp)K is anticanonically balanced relative to 
ξp ∈

√
−1 LieT , and let sp ∈ B(H0(X, L)p)T be orthonormal with respect to L2(hp). 

Then for all A ∈ Herm(Cnp)K satisfying 〈Id, A〉ξp = 0, we have

Tr[eLξp/p]
2 Vol(dνh) 〈A,Dspμξp(A)〉ξp = ‖A‖2

ξp −
(

1 + 1
p

)
〈A,E

ξp
hp (A)〉ξp . (6.27)

Proof. Let us first compute Dsμξ(A) ∈ Herm(Cnp)T , for general ξ ∈
√
−1 LieT , 

s ∈ B(H0(X, Lp))T and A ∈ Herm(Cnp)T . Using Proposition 4.2, Proposition 4.5 and 
formula (4.30), in the identification (4.7) we get

Dsμξ(A) =

⎛⎝∫
X

∂

∂t

∣∣∣
t=0

〈etAsj , etAsk〉hp

etAe
Lξ/2psp

dν
eLξ/2ps

⎞⎠np

j, k=1

+

⎛⎝∫
X

〈sj , sk〉hp

e
Lξ/2ps

∂

∂t

∣∣∣
t=0

dν
etAeLξ/2ps

⎞⎠np

j, k=1

−
(

∂

∂t

∣∣∣
t=0

Vol(dνetAs)
Tr[eLξ/p]

)
Id

=
∫
X

e−Lξ/2p(AΠ
eLξ/2ps + Π

eLξ/2psA− 2σ
eLξ/2ps(A)Π

eLξ/2ps)e
−Lξ/2p dν

eLξ/2ps

− 2
p

∫
X

σ
eLξ/2ps(A)e−Lξ/2pΠ

eLξ/2pse
−Lξ/2p dν

eLξ/2ps

+ Vol(dνs)
Tr[eLξ/p]

⎛⎝2
p

∫
X

σs(A) dνs

⎞⎠ Id . (6.28)

Then by Propositions 4.4 and 4.5, for any A ∈ Herm(Cnp)T with Tr[eLξ/p A] = 0, we 
get

1
2 Tr[eLξ/p ADsμξ(A)]

=
∫
X

σ
eLξ/2ps(A

2) dν
eLξ/2ps −

(
1 + 1

p

)∫
X

σ
eLξ/2ps(A)2 dν

eLξ/2ps (6.29)

On the other hand, from Proposition 5.2 and Definition 5.3, for any hp ∈ Met+(Lp)T we 
get

Tr[eLξ/pA2] =
∫
X

σhp(A2)σhp(eLξ/p) ρhp dνh ,

Tr
[
eLξ/pA E ξ

hp(A)
]

=
∫

σhp(A)2σhp(eLξ/p) ρhp dνh .

(6.30)
X
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Using Proposition 4.6 and comparing formulas (6.29) and (6.30), this gives the result. �
For any k ∈ N and p ∈ N∗ big enough, consider the positive Hermitian metric 

hp
k(p) ∈ Met+(L)K constructed in Proposition 6.2, and let sk(p) ∈ B(H0(X, Lp))T be 

orthonormal with respect to L2(hp
k(p)). Consider the induced identification (6.25), and 

let ξp ∈
√
−1 LieT be given by Corollary 3.4. The following result constitutes the heart 

of our strategy, using the asymptotics of the spectral gap of the Berezin transform given 
in Theorem 5.9 to give a crucial estimate from above on the Berezin-Toeplitz quantum 
channel.

Theorem 6.5. There exists ε > 0 such that for all k � n + 3, all p ∈ N∗ big enough and 
for any A ∈ Herm(Cnp)K satisfying 〈Id, A〉ξp = 〈Lη, A〉ξp = 0 for all η ∈

√
−1LieT , we 

have

〈A,E
ξp
hp
k(p)(A)〉ξp �

(
1 − (1 + ε)p−1) ‖A‖2

ξp . (6.31)

Proof. For any s ∈ B(H0(X, Lp))T and η ∈
√
−1 LieT , we write θs(η) := θhs(η) to 

simplify notations. By Propositions 2.2, 4.2 and 4.5, we have

p θs (η)hp
s = ∂

∂t

∣∣∣
t=0

φ∗
tξh

p
s = σs(Lη)hp

s . (6.32)

Given hp ∈ Met+(Lp)K and sp ∈ B(H0(X, Lp))T orthonormal with respect to L2(hp), 
Proposition 3.1 and Definition 5.3 of the quantum channel then imply that for any 
ξ, η ∈

√
−1LieT , we have

E ξ
hp(Lη) = p Thp(θ

eLξ/2psp
(η)) . (6.33)

Using Propositions 2.2 and 6.2, we get from formula (6.19) a constant C > 0 such that 
|θ

e
Lξp

/2psk(p)(η) − θhk(p)(η)|C 0 � C|η| pn−k, for all η ∈
√
−1 LieT and p ∈ N∗. Hence by 

Theorem 2.9, Definition 2.10, and Proposition 3.1 and as ‖ · ‖tr � Cpn/2‖ · ‖op for some 
C > 0, formula (6.33) implies∥∥∥∥E ξp

hp
k(p)(Lη) −

p

p + 1Lη

∥∥∥∥
tr

� Cp
3n
2 +1−k|η| . (6.34)

On the other hand, recall the notation (5.33) for the increasing sequence of eigenvalues 
of the Tian-Zhu operator Δξ

h of Lemma 2.6, for any h ∈ Met+(L) and ξ ∈
√
−1 LieT . 

Proposition 3.6 and formula (6.7) show that for any j ∈ N, there exists a constant Cj > 0
such that |λj(hk(p), ξp) − λj(h∞, ξ∞)| � Cjp

−1, for all p ∈ N∗. Using Theorem 5.9, we 
thus get that for any j ∈ N, there exists a constant Cj > 0 such that for all p ∈ N∗, 
we have 

∣∣1 − γj(hp
k(p), ξp) − p−1λk(h∞, ξ∞)

∣∣ � Cjp
−2. Using Proposition 5.4, this shows 

that there exists ε, C > 0 such that for all p ∈ N∗,



50 L. Ioos / Journal of Functional Analysis 282 (2022) 109400
Spec(E ξp
hp
k(p)) ∩ [1 − (1 + ε)p−1, 1 − (1 − ε)p−1]

⊂ [1 − p−1 − Cp−2, 1 − p−1 + Cp−2] . (6.35)

Recall from Proposition 2.2 that θhk(p) :
√
−1LieT → C∞(X, R) is an embedding. For 

any η1, η2 ∈
√
−1LieT , Propositions 3.1, 3.2, 5.2, 5.5 and 6.2 imply that for all p ∈ N∗, 

we have

〈Lη1 , Lη2〉ξp
pn+2 = 〈θhk(p)(η1), θhk(p)(η2)〉L2(hk(p),ξp,p) + |η1| |η2|O(p−1) , (6.36)

so that ‖Lη‖ξp � ε|η|pn
2 +1 for some ε > 0 not depending of p ∈ N∗ big enough. Note 

also from Propositions 3.1 and 3.6 that there is C > 0 such that the norm induced by 
(4.28) satisfies C−1‖ · ‖tr � ‖ · ‖ξp � C‖ · ‖tr for all p ∈ N∗.

Set now k � n + 3. Using Proposition 3.1 together with an elementary Lemma on 
quasi-modes (see for instance [23, Lem. 2.1]), formulas (6.34) to (6.36) imply the existence 
of a constant C > 0 and an eigenvector L̃η ∈ Herm(Cnp)K of E ξp

hp
k(p) with associated 

eigenvalue λ ∈ [1 − p−1 − Cp−2, 1 − p−1 + Cp−2] and such that

‖L̃η‖ξp = ‖Lη‖ξp � ε|η|pn
2 +1 and

∥∥∥L̃η − Lη

∥∥∥
ξp

� Cp
n
2 −1|η| . (6.37)

Using Proposition 2.7 and Theorem 5.9 again, we know that the dimension of the sum 
of eigenspaces associated with the right hand side of (6.35) is equal to dimT , so that 
by formula (6.36), the operators L̃η ∈ Herm(Cnp)K for all η ∈

√
−1LieT generate 

this subspace as soon as p ∈ N∗ is big enough. As we have E ξp
hp
k(p)(Id) = Id by Propo-

sition 2.12, Lemma 2.6, Proposition 5.4 and formula (6.35) imply that (6.31) holds for 
A ∈ Herm(Cnp)K belonging to the orthogonal of the subspace generated by IdHp

and L̃η

for all η ∈
√
−1LieK. Now for any A ∈ Herm(Cnp)K satisfying 〈Id, A〉ξp = 〈Lη, A〉ξp = 0

for all η ∈
√
−1 LieT , formula (6.37) and Cauchy-Schwartz imply the existence of C > 0

such that

〈L̃η, A〉ξp � C|η| pn
2 −1‖A‖ξp � C

ε
p−2‖L̃η‖ξp‖A‖ξp . (6.38)

It then suffices to consider the splitting of A into the eigenspaces of E ξp
hp
k(p) to get the 

result. �
Using the relation between the derivative of the moment map and the relative quantum 

channel given in Proposition 6.4, we can now apply the estimate of Theorem 6.5 to give 
an estimate from below for the derivative of the moment map at the approximately 
balanced bases. This lower bound constitutes the core of the proof of Theorem 1.1, 
and this shows how Berezin-Toeplitz quantization can be used to bypass the delicate 
geometric argument in the proofs of Donaldson [13] and Phong and Sturm [34] of the 
analogous result for the original notion of balanced metrics.
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Corollary 6.6. For any k, k0 ∈ N with k � k0 � n + 3, there exists ε > 0 such that 
for all p ∈ N∗ big enough, for all B ∈ Herm(Cnp)K with ‖B‖ξp � εp−k0 and all 
A ∈ Herm(Cnp)K satisfying 〈Id, A〉ξp = 〈Lη, A〉ξp = 0 for all η ∈

√
−1LieK, we have

Tr[eLξp/p]
Vol(dνeBsk(p))

〈A,DeBsk(p)μξp(A)〉ξp � ε

p
‖A‖2

ξp . (6.39)

Proof. The proof uses the fact that Proposition 6.4 is approximately satisfied for ap-
proximately balanced metrics. First note that for all s ∈ B(H0(X, Lp))T and all 
A ∈ Herm(Cnp)K , Cauchy-Schwartz inequality and the fact that Πs is a rank-1 pro-
jector implies that |σs(A)|C 0 � ‖A‖tr and |σs(A2)|C 0 � ‖A‖2

tr. Consider the operator Sp

acting on A ∈ L (H0(X, Lp), Hs)K by

Sp(A) := A−
(

1 + 1
p

)
E

ξp
hp
k(p)(A) . (6.40)

Then plugging s = eBsk(p) into formula (6.29) and comparing with (6.30), we can use 
Proposition 6.2 and Lemma 6.3 to get a constant C > 0 such that for all p ∈ N∗, 
for all B ∈ Herm(Cnp)K with ‖B‖ξp � C−1p−k0 and for all A ∈ Herm(Cnp)K with 
〈Id, A〉ξp = 0, we get that

∣∣∣∣∣ Tr[eLξp/p]
Vol(dνeBsk(p))

〈A,DeBsk(p) μξp(A)〉ξp − 2〈A,Sp(A)〉ξp

∣∣∣∣∣ � C pn−k0‖A‖2
ξp . (6.41)

We then get the result from Theorem 6.5 by taking k0 � n + 3. �
Thanks to the lower bound of Corollary 6.6, we can now follow the standard strategy 

of Donaldson in [13], adapted to the case of general Aut(X). The following result is 
inspired from the moment map Lemma of Donaldson in [13, Prop. 17]. We provide a 
proof working in greater generality, as we do not claim that Definition 4.8 defines a 
moment map of any kind.

Proposition 6.7. Consider a C 1-map

μ : B(H0(X,Lp))T → Herm(Cnp)T (6.42)

satisfying μ(s) ∈ Herm(Cnp)K for all s ∈ B(H0(X, Lp))T inducing a K-invariant prod-
uct Hs ∈ Prod(H0(X,Lp))K , and such that μ(Us) = Uμ(s) U∗ for all U ∈ U(np)T and 
〈Id, μ(s)〉ξp = 〈Lη, μ(s)〉ξp = 0 for all η ∈

√
−1 LieT .

Assume that there exist s ∈ B(H0(X, Lp))T inducing Hs ∈ Prod(H0(X, Lp))K and 
λ, δ > 0 such that

(1) λ ‖μξp(s)‖ξp < δ;
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(2) λ〈A, DeBsμξp(A)〉ξp � ‖A‖2
ξp
, for all B ∈ Herm(Cnp)K such that ‖B‖ξp � δ and all

A ∈ Herm(Cnp)K such that 〈Id, A〉ξp = 〈Lη, A〉ξp = 0 for all η ∈
√
−1 LieT .

Then there exists B ∈ Herm(Cnp)K with ‖B‖ξp � δ and μ(eBs) = 0.

Proof. First note that for any A, B ∈ Herm(Cnp)T , U ∈ U(np)T and s ∈ B(H0(X, Lp))T , 
using that μ(Us) = Uμ(s) U∗, we get

Tr[ADUsμ(A) eLξp/p] = ∂

∂t

∣∣∣
t=0

Tr[Aμ(etAUs) eLξp/p]

= Tr[U∗AU Dsμ(U∗AU) eLξp/p] .
(6.43)

Thus assumption (2) is equivalent to

(2′) λ〈A, DUeBsμ(A)〉ξp � ‖A‖2
ξp
, for all B ∈ Herm(Cnp)K such that ‖B‖ξp � δ , all

U ∈ U(np)K and all A ∈ Herm(Cnp)K such that 〈Id, A〉ξp = 〈Lη, A〉ξp = 0 for all
η ∈

√
−1 LieT .

Let now s ∈ B(H0(X, Lp))T inducing Hs ∈ Prod(H0(X, Lp))K be such that assumptions 
(1) and (2) are satisfied, and consider the induced identification (6.25). Then the map

GL(Cnp)K −→ Prod(H0(X,Lp))K

G �−→ HGs ,
(6.44)

identifies Prod(H0(X, Lp))K with the quotient of GL(Cnp)K by U(np)K . This realizes 
Prod(H0(X, Lp))K as a symmetric space, whose tangent space at every point is naturally 
identified with Herm(Cnp)K . The scalar product 〈·, ·〉ξp then makes this space into a 
complete Riemannian manifold, whose geodesics are of the form

t �−→ HetBs ∈ Prod(H0(X,Lp))K , t ∈ R , (6.45)

for all B ∈ Herm(Cnp)K .
Note on the other hand that the tangent space of the orbit GL(Cnp)K . s ⊂

B(H0(X, Lp))T is naturally identified with the space of endomorphisms commuting with 
the action of K on Cnp . Then by assumption, the restriction of the map (6.42) to this 
orbit can be identified with a vector field along this orbit, and we define st ∈ GL(Cnp)K . s
for all t > 0 as the solution of the ODE⎧⎪⎨⎪⎩

∂
∂t st = −μ(st) for all t � 0 ,

s0 = s .
(6.46)

If μ(s) = 0, then the result is trivially satisfied, so that we can assume μ(s) 
= 0, in 
which case μ(st) 
= 0 for all t � 0. Let t0 � 0 be such that there exist Ut ∈ U(np)K
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and Bt ∈ Herm(Cnp)K with ‖Bt‖ξp � δ such that st = Ute
Bts for all t ∈ [0, t0]. Using 

assumption (2′) with A := μ(st), for all t ∈ [0, t0] we have

−λ
∂

∂t
‖μ(st)‖2

ξp = 2λ〈μ(st)Dstμ(μ(st))〉ξp � 2‖μ(st)‖2
ξp . (6.47)

By derivation of the square, this implies λ ∂
∂t‖μ(st)‖ξp � −‖μ(st)‖ξp for all t ∈ [0, t0], so 

that using Grönwall’s lemma with initial condition (1) and as μ(st) = Utμ(eBts) U∗
t , we 

get

‖μ(eBts)‖ξp = ‖μ(st)‖ξp � e−t/λ ‖μ(s)‖ξp <
δ

λ
e−t/λ . (6.48)

Then by equation (6.46), the Riemannian length L(t0) � 0 of the path {t �→ Hst}t∈[0,t0] ⊂
Prod(H0(X, Lp))K satisfies

L(t0) =
t0∫

0

‖μ(st)‖ξp dt <
δ

λ

+∞∫
0

e−t/λ dt = δ . (6.49)

This means that there exists ε > 0 such that all points of {t �→ Hst}t∈[0,t0+ε] can be 
joined by a geodesic of length strictly less than δ, i.e., that for each t ∈ [0, t0 + ε], there 
exists Bt ∈ Herm(Cnp)K with ‖Bt‖ξp � δ such that Hst = HeBt s, so that there exists 
Ut ∈ U(np)K such that st = Ute

Bts. Thus I := {t0 � 0 | L(t0) < δ} is non-empty, open 
and closed in [0, +∞[, so that I = [0, +∞[. In particular, the path {t �→ Hst}t>0 has total 
Riemannian length strictly less than δ, so that it converges to a limit point HeB∞ s ∈
Prod(H0(X, Lp))K by completeness, with B∞ ∈ Herm(Cnp)K satisfying ‖B∞‖ξp � δ. 
Finally, inequality (6.48) for all t > 0 implies

‖μ(eB∞s)‖ξp = lim
t→+∞

‖μ(eBts)‖ξp = 0 . (6.50)

This gives the result. �
Proof of existence and convergence in Theorem 1.1. Let hp ∈ Met+(Lp)K , let sp ∈
B(H0(X, Lp))T be orthonormal with respect to L2(hp), and consider the identification 
(6.25). For any ξ ∈

√
−1LieT , using Proposition 4.4 and formulas (2.39) and (4.30), we 

get from Definition 4.8 the following inequality, for all A ∈ Herm(Cnp)K ,

Tr[eLξ/p]
Vol(dνsp)

〈A,μξ(sp)〉ξ

= Tr[eLξ/p]
Vol(dνsp)

∫
X

σ
eLξ/2psp(A) dν

eLξ/2psp −
∫
X

σhp(eLξ/pA) ρhp dνh

=
∫

σ
eLξ/2psp(A)

(
Tr[eLξ/p]
Vol(dνsp)

dν
eLξ/2psp
dνh

− σhp(eLξ/p) ρhp

)
dνh .

(6.51)
X
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For any k ∈ N and p ∈ N∗ big enough, consider now the approximately balanced metric 
hk(p) ∈ Met+(L)K of Proposition 6.2, let sk(p) ∈ B(H0(X, Lp))T be orthonormal with 
respect to L2(hp

k(p)), and let {ξp ∈
√
−1 LieT}p∈N∗ be the sequence of Corollary 3.4. 

By Proposition 4.10, the relative moment map μξp : B(H0(X, Lp))T → Herm(Cnp)T of 
Definition 4.8 satisfies the basic assumptions of Proposition 6.7, so that it suffices to show 
that sk(p) ∈ B(H0(X, Lp))T satisfies the assumptions (1) and (2) of Proposition 6.7, 
for some appropriate λ, δ > 0. Using Proposition 6.2 and Lemma 6.3 and the fact that 
|σ

e
Lξp

/2psk(p)(A)|C 0 � ‖A‖tr by Cauchy-Schwartz inequality, we get from formula (6.51)
a constant C > 0 such that for all p ∈ N∗ and all A ∈ Herm(Cnp)K , we have

Tr[eLξ/p]
Vol(dνsk(p))

〈A,μξp(sk(p))〉ξp � C‖A‖ξp pn−k , (6.52)

which implies Tr[eLξ/p]
Vol(dνsk(p))‖μξ(sk(p))‖ξp � Cpn−k for all p ∈ N∗. Taking k0 � n + 3, we 

can then choose k > k0 + n + 1, and Corollary 6.6 together with Proposition 3.2 shows 
that sk(p) ∈ B(H0(X, Lp))T satisfies the assumptions (1) and (2) of Proposition 6.7 for 
p ∈ N∗ big enough, with

λ := p

ε

Tr[eLξp/p]
Vol(dνsk(p))

and δ := C

ε
pn+1−k . (6.53)

This gives Hermitian endomorphisms Bp ∈ Herm(Cnp)K with ‖Bp‖ξp � εp−k0 such 
that μξ(eBpsk(p)) = 0 for all p ∈ N∗ big enough. By Proposition 4.9, the Hermitian 
metrics hp := hp

eBpe
Lξp

/psk(p)
∈ Met+(Lp)K are then anticanonically balanced relative 

to ξp for all p ∈ N∗ big enough. If we also chose k0 > n + 1 + m/2 for some m ∈ N, 
Lemma 6.3 shows the Cm-convergence (1.6) to the Kähler-Ricci soliton ωh∞ . Together 
with Proposition 3.6, this concludes the proof of Theorem 1.1. �
6.3. Energy functional and uniqueness

In this Section, we will establish the uniqueness statement in Theorem 1.1 as a quan-
tization of the analogous argument of Tian and Zhu in [44, Th. 3.2], using our study 
in Section 3.2 of quantized Futaki invariants as obstructions for relative anticanonically 
balanced metrics, and convexity results due to Berndtsson [4,5] applied to the energy 
functional associated with the relative moment map of Definition 4.8.

Recall the setting of Section 4.1. Via the natural action of GL(Cnp)T on the space 
B(H0(X, Lp))T , the quotient map

B(H0(X,Lp))T −→ B(H0(X,Lp))T /U(np)T

s �−→ [s] ,
(6.54)
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identifies B(H0(X, Lp))T /U(np)T with the space of T -invariant Hermitian inner prod-
ucts on H0(X, Lp). The twisted trace product (4.28) makes this space into a complete 
Riemannian manifold, whose geodesics are of the form

t �−→ [etAs] ∈ B(H0(X,Lp))T /U(np)T , t ∈ R , (6.55)

for all A ∈ Herm(Cnp)T . Fixing a base point s0 ∈ B(H0(X, Lp))T , the free and transitive 
action of GL(Cnp)T on B(H0(X, Lp))T induces an identification

B(H0(X,Lp))T � GL(Cnp)T , (6.56)

and this induces a determinant map

dets0 : B(H0(X,Lp))T /U(np)T −→ ]0,+∞[ . (6.57)

The following energy functional has been introduced in [3, §4.2.2].

Definition 6.8. The energy functional Ψξ : B(H0(X, Lp))T /U(np)T → R relative to 
ξ ∈

√
−1LieT is defined for all H ∈ Prod(H0(X, Lp)) by

Ψ([s]) = − log Vol(dνs) −
2
p

log dets0 [eLξ/ps]
Tr[eLξ/p]

. (6.58)

For any ξ ∈
√
−1LieT , recall the induced scalar product (4.28) on Herm(Cnp)T . The 

role of the energy functional of Definition 6.8 comes from the following identity.

Lemma 6.9. For all s ∈ B(H0(X, Lp))T and A ∈ Herm(Cnp)T , we have

d

dt

∣∣∣
t=0

Ψξ([etAs]) = 2
p Vol(dνs)

〈μξ(s), A〉ξ . (6.59)

Proof. Using Proposition 4.2 and formula (2.3), from Definition 6.8 we compute

d

dt

∣∣∣
t=0

Ψ([etAs]) = 2
p Vol(dνs)

∫
X

σs(A) dνs −
2
p

Tr[eLξ/pA]
Tr[eLξ/p]

. (6.60)

On the other hand, using formula (4.30), Definition 4.8 gives

Tr[eLξ/pμξ(s)A] =
∫
X

σ
e
Lξ/2p s(A) dν

e
Lξ/2p s −

Vol(dνs)
Tr[eLξ/p]

Tr[eLξ/pA] . (6.61)

From formula (2.5) and Proposition 4.5, a change of variable with respect to φξ/2p ∈ TC
gives the result. �
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By Proposition 4.9, this implies in particular that [s] ∈ B(H0(X, Lp))T /U(np)T is 
a critical point of Ψξ : B(H0(X, Lp))T /U(np)T → R if and only if there exists hp ∈
Met+(Lp)T anticanonically balanced relative to ξ with s orthonormal with respect to 
L2(hp).

The following result is a consequence of the results of [4,5] on positivity of direct 
images.

Proposition 6.10. For any ξ ∈
√
−1LieT , the energy functional of Definition 6.8 is 

convex along geodesics of B(H0(X, Lp))T /U(np)T , and strictly convex except along 
geodesics of the form t �−→ [et(Lη+c)s], with c ∈ R and η ∈ Lie Aut(X) such that 
Lη ∈ L (H0(X, Lp), Hs)T .

Proof. By definition (6.55) of the geodesics in B(H0(X, Lp))T /U(np)T , the second term 
of formula (6.58) for Ψξ is clearly affine along geodesics, so that it suffices to establish 
the convexity of the first term.

Now as explained in the proof of [2, Lem. 7.2], via formula (2.7) the results of [5]
imply that the first term of formula (6.58) is convex along geodesics, and strictly convex 
along geodesics except those generated by A ∈ Herm(Cnp)T such that there exists c > 0
and η ∈ Lie Aut(X) with

∂

∂t

∣∣∣
t=0

hetAs = (θhs(η) + c)hs . (6.62)

By Proposition 2.2, the fact that θhs(η) ∈ C∞(X, R) implies that LJηhs = 0, so that 
Lη ∈ L (H0(X, Lp), Hs)T . By Proposition 2.12 and formula (6.32), we then have σs(A) =
σs(Lη+c). On the other hand, the image of the Kodaira map (2.28) is not contained in any 
proper projective subspace of P (H0(X, Lp)∗) by definition, hence following for instance 
[22, Prop. 4.8], we know that the Berezin symbol σs : L (H0(X, Lp), Hs)T → C∞(X, R)
is injective (see also [19, §3]). This concludes the proof. �
Proof of uniqueness in Theorem 1.1. First note that, if hp ∈ Met+(Lp)T is anticanon-
ically balanced relative to ξp ∈ Lie Aut(X), then for any φ ∈ Aut0(X), the pullback 
metric φ∗ hp is anticanonically balanced relative to φ∗ ξp. On the other hand, following 
the argument of Tian-Zhu in the proof of [44, Th. 3.2], if ξ, ξ̃ ∈ Lie Aut(X) are such that 
Jξ, Jξ̃ are in the Lie algebra of maximal compact subgroups K, K̃ ⊂ Aut0(X), then 
there exists φ ∈ Aut0(X) such that φ∗ Jξ̃ ∈ K. Using Proposition 4.7, we are then re-
duced to show uniqueness up to Aut0(X) of anticanonically balanced metrics relative to 
the vector field ξp ∈

√
−1 LieK of Corollary 3.4, for a fixed maximal compact subgroup 

K ⊂ Aut0(X).
Let now hp, h̃p ∈ Met+(Lp) be anticanonically balanced metrics relative to ξp ∈√
−1 LieK, let T ⊂ K be the closure of the subgroup generated by Jξp and let 

sp, s̃p ∈ B(H0(X, Lp))T be orthonormal with respect to L2(hp), L2(h̃p). Proposi-
tion 4.9 and Definition 6.8 imply that [sp], [̃sp] ∈ B(H0(X, Lp))T /U(np)T are both 
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critical points of Ψξp , so that Ψξp cannot be strictly convex along the geodesic joining 
them. Proposition 6.10 then implies that there exists c > 0 and η ∈ Lie Aut(X) with 
η ∈ L (H0(X, Lp), Hsp)T such that [̃sp] = [ceLηsp]. Then φ∗

η ξp = ξp, and using the 
characterization (4.20), Proposition 4.5 implies

ωh̃p
= ω

e
Lξp/2p s̃p

= ω
ceLη e

Lξp/2p sp
= φ∗

η ωe
Lξp/2p sp

= φ∗
η ωhp

. (6.63)

This concludes the proof. �
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