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We use the theory of Berezin-Toeplitz operators of Ma and 
Marinescu to study the spaces of holomorphic sections of 
a prequantizing line bundle over compact Kähler manifolds 
under deformations of the complex structure. We show that 
the parallel transport in the induced vector bundle over 
the deformation space behaves like a Toeplitz operator, 
and compute its first coefficient. We then use this result 
to establish a semi-classical trace formula for the induced 
quantization of symplectic maps, and give an application to 
Witten’s asymptotic expansion conjecture for the quantum 
representations of the mapping class group.
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1. Introduction

Geometric quantization is a set of geometric methods to construct a quantum me-
chanical system, represented by a Hilbert space of quantum states, from the underlying 
system of classical mechanics, represented by a symplectic manifold (X, ω). In this con-
text, we require (X, ω) to be prequantized, so that X is endowed with a Hermitian line 
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bundle (L, hL) together with a Hermitian connection ∇L of curvature RL ∈ Ω2(X, C)
satisfying

ω =
√
−1
2π RL . (1.1)

Assume that (X, ω) admits a compatible integrable complex structure J ∈ End(TX), 
making (X, J, ω) into a Kähler manifold and (L, hL, ∇L) into a holomorphic Hermitian 
line bundle equipped with its Chern connection. Then the Kähler quantization of (X, ω)
at level p ∈ N∗ is the Hilbert space Hp of L2-holomorphic sections of Lp := L⊗p for the 
natural L2-Hermitian product (2.8). The integer p ∈ N∗ represents a quantum number, 
usually inversely proportional to the Planck constant, and asymptotic results when p
tends to infinity are then supposed to describe the so-called semi-classical limit, when 
the scale gets so large that we recover the laws of classical mechanics as an approximation 
of the laws of quantum mechanics. In this paper, we will restrict to the case of (X, ω)
compact of dimension dimX = 2n, so that (X, ω) represents a bounded mechanical 
system and the associated Hilbert space of quantum states Hp is finite dimensional for 
all p ∈ N∗.

A fundamental problem in this context is the dependence of the quantization on the 
choice of a complex structure J ∈ End(TX). A natural way to study this question is 
to consider the quantization of (X, ω) at level p ∈ N∗ as a Hermitian vector bundle 
Hp over a space B of compatible complex structures, whose fibre at b ∈ B identifies 
with the induced Hilbert space Hp,b of holomorphic sections. One can then compare the 
quantizations associated with different complex structures via parallel transport with 
respect to the natural L2-connection (2.18) on the vector bundle Hp over B. This point 
of view can be applied in particular to the quantization of symplectic maps, that is 
diffeomorphisms ϕ : X → X preserving ω, which we require in addition to lift to the 
prequantization (L, hL, ∇L). In the particular case when ϕ : X → X preserves the 
complex structure, one can define its quantization at level p ∈ N∗ as the induced unitary 
operator on holomorphic sections of Lp, but a symplectic map does not preserve any 
compatible complex structure in general. Instead, consider a path

{Jt ∈ End(TX)}t∈R (1.2)

of compatible complex structures such that J0 := J and J1 := ϕ∗J . Then for any p ∈ N∗, 
there is an induced pullback map ϕ∗

p : Hp,1 → Hp,0 from the space of holomorphic 
sections of Lp with respect to J1 to the space of holomorphic sections of Lp with respect 
to J0. One can then consider the parallel transport Tp : Hp,0 → Hp,1 with respect to 
the L2-connection along this path to get by composition a unitary operator

ϕ∗
pTp : Hp,0 −→ Hp,0 , (1.3)

giving a geometric definition of the quantization of the symplectic map ϕ : X → X.
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In this paper, we use the theory of Bergman kernels of Ma and Marinescu in [42]
to study the parallel transport Tp as p → +∞. To describe our main result, let
π : R × X → R be the fibration of complex manifolds with fibre Xt := (X, Jt)
at t ∈ R, and write τKX

t : KX0 → KXt
for the parallel transport in the induced 

relative canonical line bundle KX := det(T (1,0)∗X) over R × X with respect to the 
natural connection (5.4) along the horizontal directions of the fibration. Using the 
identificationT (0,1)Xt � T (1,0)∗Xt induced by the C-bilinear form gTX

t := ω(·, Jt·) over 
TXC for all t ∈ R, we denote by det(Π0

t ) : KX,0 → KX,t the line bundle isomorphism 
induced by the projection Π0

t : T (0,1)X0 → T (0,1)Xt on T (0,1)Xt with kernel T (1,0)X0
inside TXC. The following theorem, which follows from Theorem 3.16 and Lemma 5.1, 
expresses the parallel transport Tp,t : Hp,0 → Hp,t with respect to the L2-connection 
(2.18) as a Toeplitz operator from one quantum space to another, and is the central result 
of this paper.

Theorem 1.1. There is a family of functions {μl,t ∈ C∞(X, C)}l∈N , smooth in t ∈ [0, 1], 
such that for all k � 0, there exists Ck > 0 such that for all p ∈ N∗,

∥∥∥Tp,t − k−1∑
l=0

p−l Pp,t μl,t Pp,0

∥∥∥ � Ckp
−k , (1.4)

in operator norm, where Pp,t : C∞(X, Lp) → Hp,t is the orthogonal projection with 
respect to the L2-Hermitian product on the space of holomorphic sections of Lp over Xt.

Furthermore, via the canonical isomorphism End(KX,0) � C, we have the following 
formula for the first coefficient,

μ2
0,t = det(Π0

t )−1τKX
t . (1.5)

Theorem 1.1 generalizes and refines the asymptotic expansion established by Andersen 
in [1, Th.6] for the parallel transport in the endomorphism bundle End(Hp) as p → +∞
induced by Hitchin connections, as defined in Section 5.2 following [2, §1]. In particular, 
Andersen uses his expansion to establish in [1, Th.1] the asymptotic faithfulness of the 
quantum representations of the mapping class group, while our explicit formula (1.5) for 
the first term of the expansion (1.4) will be crucial here to obtain Witten’s formula for 
the quantum representations of the mapping class group in Theorems 1.3 and 1.4.

On the other hand, Theorem 1.1 has already been applied in [34] to the quantization 
of Hamiltonian flows ϕt : X → X, t ∈ R, via the parallel transport over the induced path 
{ϕ∗

tJ ∈ End(TX)}t∈R of complex structures. In particular, our explicit formula (1.5) for 
the first coefficient is used in [34, Th.1.2, Th.1.3] to establish a Gutzwiller trace formula 
in this context. The parallel transport over complex structures induced by Hamiltonian 
flows has also been studied by Foth and Uribe in [30], where it is shown that it satisfies 
a Schrödinger equation, and by Charles in [26], who studies its semi-classical properties 
in the metaplectic case.
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In Section 4, we use Theorem 1.1 to estimate the trace of the quantization (1.3) of 
a symplectic map ϕ : X → X as p → +∞, showing in particular that it localizes 
around the fixed point set Xϕ ⊂ X of ϕ. In the following theorem, which follows from 
Theorem 4.3 and Lemma 5.2, we assume for simplicity that Xϕ is connected.

Theorem 1.2. Assume that Xϕ is a smooth submanifold with TXϕ = Ker(IdTX − dϕ). 
Then there are densities νr over Xϕ for all r ∈ N, such that for any k ∈ N and as 
p → +∞,

TrHp
[ϕ∗

pTp] = p
dim Xϕ

2 λp

⎛⎝k−1∑
r=0

p−r

∫
Xϕ

νr + O(p−k)

⎞⎠ , (1.6)

where λ ∈ C is the value of the action of ϕ : X → X on L over Xϕ. Furthermore, there 
is an explicit local formula for ν0, given in (4.27).

If Xϕ is a complex submanifold of X and if ϕ preserves a complex subbundle N
transverse to TXϕ ⊂ TX over Xϕ, then

ν0 = (−1)
2n−dim Xϕ

4 (ϕKX τKX ,−1)1/2 detN (IdN − dϕ|N )−1/2|dv|TX/N , (1.7)

for some natural choices of square roots, where τKX : KX0 → KX1 is the parallel trans-
port with respect to the natural connection (5.4) and |dv|TX/N is the density over Xϕ

induced by gTX
0 := ω(·, J0 ·) and the decomposition TX = TXϕ ⊕N as in (4.25).

Note that the assumption of (1.7) is automatically satisfied when dimXϕ = 0 or 
when ϕ is holomorphic. The general version of Theorem 1.2, which is Theorem 4.3, gives 
a general formula for the higher order term of (1.6) without the assumption of (1.7), and 
includes the tensor product with a general Hermitian vector bundle E over the fibration 
π : R ×X → R. In Section 4.1, we first establish the general version of Theorem 1.2 as 
above in the case dimXϕ = 0, which generalizes a result of Charles in [27, Th.5.3.1], 
who only handles the metaplectic case, that is taking E = K

1/2
X to be a square root of 

the relative canonical bundle. He then applies it in [28, Th.1.2] to prove an asymptotic 
projective version of Witten’s asymptotic conjecture for the quantum representations of 
the mapping class group. As we will see below, it is crucial to be able to consider the 
case without metaplectic correction to handle the actual conjecture, as formulated in the 
language of modular functors of Segal in [48, §5]. Furthermore, Theorem 1.2 deals with 
Xϕ of arbitrary dimension, which allows to extend the conjecture to that case.

In case the symplectic map ϕ preserves the complex structure, so that the pullback 
map ϕ∗

p preserves Hp for all p ∈ N∗, we recover via Theorem 4.3 the asymptotics of 
TrHp

[ϕ∗
p] as p → +∞ of the following equivariant Riemann-Roch-Hirzebruch formula

TrHp
[ϕ∗

p] =
∫

Tdϕ−1(T (1,0)X) chϕ−1(Lp) , (1.8)

Xϕ
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where Tdϕ−1(T (1,0)X) represents the equivariant Todd class of (X, J) and chϕ−1(Lp)
represents the equivariant Chern character of Lp for the action induced by ϕ−1, as 
defined in [19, Def. 1.5].

In Section 5, we show how Theorem 1.2 can be applied to establish Witten’s asymptotic 
expansion conjecture for the quantum representations of the mapping class group, as 
described for instance in [3, Conj.1.1], and to compute the formula given by Witten in 
[50, (2.17)] for the first coefficient. For simplicity and concreteness, we consider the case 
of the moduli space X := M of gauge equivalence classes of flat SU(m)-connections over 
Σ\D with holonomy around the boundary equal to e

2
√

−1πd
m for some fixed d ∈ (Z/mZ)∗, 

where Σ is a compact oriented surface of genus g � 2 and D ⊂ Σ is an embedded 
disk. Then as explained in Propositions 5.9 and 5.10, the moduli space M admits a 
natural structure of a compact prequantized symplectic manifold. We then consider 
the map ϕ : M → M naturally induced by an orientation preserving diffeomorphism 
f ∈ Diff+(Σ, D) preserving D pointwise. Then ϕ is a smooth symplectic map lifting 
naturally to the prequantization, and only depends on f ∈ Diff+(Σ, D) up to isotopies 
of Σ preserving D, so that it represents an element of the mapping class group of Σ
acting symplectically on M .

An element σ ∈ TΣ of the Teichmüller space of Σ induces canonically a compatible 
complex structure Jσ ∈ End(TM ), and we can consider the associated quantum bundle 
Hp over TΣ for all p ∈ N∗, called the Verlinde bundle. It is endowed with a canonical 
connection for all p ∈ N∗, which was introduced independently by Hitchin in [33, Th.3.6]
and Axelrod, S. Della Pietra and Witten in [12, §4.b]. Note that this canonical connection 
is defined in [33] only up to an additive scalar form, which is fixed canonically in [12]. 
Let Tp be the induced parallel transport along a path γ : [0, 1] → TΣ joining σ ∈ TΣ
to f∗σ ∈ TΣ. Then the trace TrHp

[ϕ∗Tp] is the anomalous Witten-Reshetikhin-Turaev 

invariant of the mapping torus Σf with one link coloured by e
2
√

−1πd
m lifting the canonical 

fibration πf : Σf → R/Z, as considered in Segal’s definition of conformal field theory in 
[48, §4] after Witten’s description in [50, (2.1)] using path integrals.

In fact, let Mf denote the moduli space of gauge equivalence classes of flat
SU(m)-connections over the mapping torus (Σ\D)f of f ∈ Diff+(Σ, D) with holonomy 

around the boundary equal to e
2
√

−1πd
m , and assume that Mf admits a smooth structure 

as in Proposition 5.9. Then there is a smooth covering r : Mf → M ϕ defined by restric-
tion on any fibre, where M ϕ ⊂ M is the fixed point set of ϕ. For any [Af ] ∈ Mf , the 
Chern-Simons invariant of [Af ] ∈ Mf is given by the formula

CS([Af ]) = m

8π2

⎛⎜⎝Tr[ξ1ξ2] +
∫
Σf

Tr
[
αf ∧ dαf + 2

3αf ∧ αf ∧ αf

]⎞⎟⎠ ∈ R/Z , (1.9)

where we took a connection form αf ∈ Ω1(Σf , su(m)) of [Af ] equal to ξ1dθ1 + ξ2dθ2 on 
the boundary of (Σ/D)f seen as a torus with coordinates θ1, θ2 ∈ S1, with ξ1, ξ1 ∈ su(m)
constant.
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On the other hand, the path γ : [0, 1] → TΣ in Teichmüller space determines a complex 
structure on the relative tangent bundle of the canonical fibration πf : Σf → R/Z up 
to isotopy, and we endow the fibres with the compatible hyperbolic Riemannian metric. 
For any [Af ] ∈ Mf , write [adAf ] for the induced connection on the trivial adjoint 
su(m)-bundle over the whole Σf .

Theorem 1.3. Let Mf =
∐q

j=1 Mf,j be the decomposition into connected components. 
Then there exist densities νr over Mf for all r ∈ N, such that for any k ∈ N, the 
anomalous Witten-Reshetikhin-Turaev invariant satisfies as p → +∞,

TrHp
[ϕ∗

pTp] = 1
m

q∑
j=1

p
dim Mf,j

2 e2
√
−1πpCSj (

√
−1)kj

⎛⎜⎝k−1∑
r=0

p−r

∫
Mf,j

νr + O(p−k)

⎞⎟⎠ ,

(1.10)
where kj ∈ Z/4Z and where CSj ∈ R/Z is the constant value of the Chern-Simons 
invariant (1.9) over Mf,j. Furthermore, there is an explicit local formula for ν0.

If r : Mf → MΣ is holomorphic and if ϕ preserves a complex subbundle transverse to 
TM ϕ ⊂ TM over M ϕ, we get

ν0([Af ]) = exp
(√

−1π
4 η0(adAf )

) ∣∣τΣf
(adAf )

∣∣1/2, (1.11)

for any [Af ] ∈ Mf , where η0(adAf ) is the adiabatic limit of the η-invariant of the 
odd signature operator of adAf restricted to odd forms over the Riemannian fibration 
πf : Σf → R/Z, and |τΣf

(adAf )|1/2 is the square root of the absolute value of the 
Reidemeister torsion of adAf , seen as a density over Mf via Poincaré duality.

Note that the hypothesis of (1.11) is automatically satisfied when dim Mf = 0 or 
when f preserves σ ∈ TΣ. The presence of the η-invariant in the formula (1.11) is a 
consequence of the holonomy theorem of Bismut and Freed in [15, Th.3.16] as well as 
the study of holomorphic determinant line bundles of Bismut, Gillet and Soulé in [18, 
§1], and depends on the chosen path in Teichmüller space. On the other hand, as showed 
in [33, Th.4.9] and in [12, §4.b], the canonical connection over the Verlinde bundle is 
projectively flat. By the explicit computation of its curvature in [12, §4.b] and in the 
language of modular functors of [48, (5.9)], the Witten-Reshetikhin-Turaev invariant of 
the mapping torus with one coloured link as above is computed by the trace Tr

H̃p
[ϕ∗

pTp], 
where Tp is the flat parallel transport in

H̃p := Hp ⊗ det(∂Σ)−
(m2−1)p
2(p+m) , (1.12)

induced by the canonical projectively flat connection on Hp and the Chern connection 
associated with the Quillen metric on the holomorphic determinant line bundle det(∂Σ)
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of the universal family of ∂-operators over TΣ, for which fractional powers exist as 
Teichmüller space is contractible and on which ϕ lifts naturally up to choices of compat-
ible lifts on each fractional power. The following result then computes its first order as 
p → +∞.

Theorem 1.4. The Witten-Reshetikhin-Turaev invariant defined above satisfies the ex-
pansion (1.10), with first coefficient as in (1.11) given for any [Af ] ∈ Mf by

ν0([Af ]) = exp
(√

−1π
4 ρ(adAf )

) ∣∣τΣf
(adAf )

∣∣1/2, (1.13)

where ρ(adAf ) is the topological ρ-invariant of adAf defined in (5.35).

As explained for instance in [3, p.10], the choice of a lift of ϕ to fractional pow-
ers of det(∂Σ) corresponds to the canonical central extension of the mapping class 
group induced by the Atiyah 2-framing of [9], which can be used to get the cor-
responding correction in [50, (2.23)]. The map associating an element of this ex-
tension to the endomorphism ϕ∗

pTp ∈ End(H̃p) is called a quantum representation 
of the mapping class group. Another approach followed by Charles in [28, §7] is to 
consider the metaplectic correction, replacing Lp by Lp ⊗ K

1/2
M for all p ∈ N∗. 

However, the corresponding trace does not coincide with the Witten-Reshetikhin-
Turaev invariant, and this approach does not imply Theorem 1.3 nor Theorem 1.4, 
even in the case dim Mf = 0, which is the only one handled in [28, Th.1.2]. By 
Lemma 5.8, we recover [28, Th.1.2] as a consequence of the general version of Theo-
rem 1.2.

The Verlinde bundle with its canonical connection is defined for much more gen-
eral moduli spaces, the one considered above being the standard smooth model. The 
above approach applies as soon as the moduli space has a natural smooth structure, 
and Theorems 1.1 and 1.2 should extend to the case of orbifolds, so that one could get 
the expansion (1.10) for much more general quantum representations of the mapping 
class group. In the case when f ∈ Diff+(Σ, D) preserves σ ∈ TΣ, so that ϕ : M → M

preserves Jσ ∈ End(TM ), Andersen applies in [3, Th.1.1] a singular version of the equiv-
ariant Riemann-Roch-Hirzebruch formula (2.13) to establish the asymptotic expansion 
for general singular moduli spaces, and Andersen and Himpel identify the first coeffi-
cient with (1.13) in [5, Th.1.6]. In [6, Th.1.2], Andersen and Petersen work in the case 
of Hitchin connections of Section 5.2, but under a weaker assumption on the fixed point 
set, to get the asymptotic expansion (1.10) for a larger class of mapping tori. However, 
they do not compute the first coefficient.

This paper is based on the theory of Berezin-Toeplitz operators of Ma and Marinescu 
in [43], and can be seen as an extension of this theory to families. More specifically, we 
work in the context of the Berezin-Toeplitz quantization introduced in [35] of general 
prequantized symplectic manifolds, using the spaces Hp of almost holomorphic sections
of Lp for all p ∈ N∗ large enough, defined as the direct sum of the eigenspaces associated 
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with the small eigenvalues of the renormalized Bochner Laplacian (2.10) of Guillemin and 
Uribe [32]. These spaces coincide with the space of holomorphic sections for p ∈ N∗ large 
enough in the Kähler case, and Theorems 3.16 and 4.3, which are the general versions of 
Theorems 1.1 and 1.2, are proved in this generality. A family version of Berezin-Toeplitz 
quantization has first been studied by Ma and Zhang in [44], where they show that 
the curvature of the quantum bundle with respect to the L2-connection is a Toeplitz 
operator, and compute the first two coefficients.

The theory of Berezin-Toeplitz operators in the Kähler case was first developed by 
Bordemann, Meinreken and Schlichenmaier in [23] and Schlichenmaier in [47]. Their 
approach is based on the work of Boutet de Monvel and Sjöstrand on the Szegö kernel in 
[25], and the theory of Toeplitz structures developed by Boutet de Monvel and Guillemin 
in [24]. In this context, Zelditch first introduced in [51] a quantization of symplectic maps 
based on a unitary version of [24], which does not depend on the choice of a path of 
complex structures. This quantization is defined up to a phase function in its symbol, 
while the amplitude [51, (3.10)] of its symbol coincides with the amplitude (3.21) of the 
local model in flat space on the diagonal, which does not depend on a path of complex 
structures. This shows via Lemma 5.3 that the first coefficient (1.5) in Theorem 1.1 also 
depends on the path only up to a phase function. The local model of Section 3.1 has also 
been considered in another form by Kirwin and Wu in [37], where they deal with paths 
of complex structures on flat space given by geodesics in the Siegel upper half-space. In 
particular, we recover [37, Th.3.4] as a special case of Proposition 3.2.

In Section 2, we introduce the basic notions of fibrations used in this paper, and recall 
the results from the theory of the Bergman kernel of [41] in this setting. In Section 3, we 
study the composition of Bergman kernels associated with different complex structures, 
introduce the corresponding generalization of a Toeplitz operator and establish the gen-
eral version of Theorem 1.1. In Section 4, we use this result to establish the general 
version of Theorem 1.2. In Section 5, we introduce the notion of a Hitchin connection 
and relate it to our notion of Toeplitz connection, then apply our results to establish 
Theorems 1.3 and 1.4.

Acknowledgments. The author wants to thank Prof. Xiaonan Ma for his constant sup-
port, and Long Mai for a useful discussion on the last section of this paper. The author 
also wants to thank the anonymous referee for useful comments and suggestions. This 
work was supported by the grant DIM-RDF from Région Ile-de-France.

2. Prequantized fibrations and Bergman kernels

In Section 2.1, we introduce the notion of a prequantized fibration and construct the 
associated quantum bundle over its base. In Section 2.2, we recall the results of [41]
in this setting. In Section 2.3, we specialize these notions in the case of a trivialized 
fibration.
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2.1. Setting

Let π : M → B be a submersion of smooth manifolds with compact fibre X such that 
dimX = 2n, and assume B connected. Let TX be the associated relative tangent bundle
over M , defined as the kernel of dπ inside the tangent bundle TM of M .

Definition 2.1. A submersion π : M → B as above together with a Hermitian line bundle 
with Hermitian connection (L, hL, ∇L) over M is called a prequantized fibration if the 
restriction of the curvature RL ∈ Ω2(M, C) of ∇L to TX ⊂ TM is non degenerate.

The relative symplectic form ω ∈ Ω2(M, R) of the fibration is defined by (1.1), and 
induces by restriction a symplectic structure on the fibres of π. For any x ∈ M , let TH

x M

be the subspace of TxM defined by

TH
x M = {v ∈ TxM | ω(v, u) = 0, ∀u ∈ TxX}. (2.1)

Then (2.1) defines a subbundle THM of TM , called the horizontal tangent bundle. We 
have

TM = TX ⊕ THM, (2.2)

and dπ induces an isomorphism between THM and π∗TB over M . For any x ∈ M and 
v ∈ Tπ(x)B, we write vHx ∈ TH

x M for its horizontal lift via (2.2), so that dπ.vHx = v. Let 
PX , PH be the projections from TM to TX, THM , and for any form α ∈ Ω•(M, C), 
write αX , αH for the restriction of α to TX, THM . Then (2.1) implies ω = ωX + ωH

via (2.2).
Let J ∈ End(TX) over M satisfying J2 = −IdTX be compatible with ω, so that ω

is J-invariant and that gTX := ω(·, J ·) defines an Euclidean metric on TX over M . We 
call J ∈ End(TX) a relative almost complex structure over M compatible with ω, and 
gTX the associated relative Riemannian metric.

Let gTB be a metric on TB, which we lift to a metric on THM via dπ. Using (2.2), 
we endow TM with the unique metric gTX ⊕ gTB restricting to gTX , gTB on TX, TB
and for which TX and THM are orthogonal. Write ∇TM for the associated Levi-Civita 
connection on TM , and following Bismut in [14, Def. 1.6], define the vertical Levi-Civita 
connection ∇TX on TX by the formula

∇TX = PX∇TMPX . (2.3)

Then ∇TX induces the Levi-Civita connection of gTX on the fibres of π, and by [17, 
Th.1.2], this definition does not depend on the choice of gTB.

If hF is a Hermitian metric on a complex vector bundle F , we write 〈·, ·〉F for the 
associated Hermitian product. Let TXC = TX ⊗R C be the complexification of TX. 
The complex structure J on TX induces a splitting
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TXC = T (1,0)X ⊕ T (0,1)X (2.4)

into the eigenspaces of J corresponding to the eigenvalues 
√
−1 and −

√
−1 respectively. 

We denote by P (1,0), P (0,1) the corresponding projections from TXC to T (1,0)X, T (0,1)X. 
Let hT (1,0)X , hT (0,1)

X be the Hermitian metrics on T (1,0)X, T (0,1)X induced by gTX via 
(2.4), and define Hermitian connections on (T (1,0)X, hT (1,0)X), (T (0,1)X, hT (0,1)X) by

∇T (1,0)X = P (1,0)∇TXP (1,0),

∇T (0,1)X = P (0,1)∇TXP (0,1).
(2.5)

The relative canonical line bundle is the line bundle KX = det(T (1,0)∗X) over M , 
equipped with hKX , ∇KX induced by hT (0,1)X , ∇T (0,1)X . Let (E, hE , ∇E) be a Hermitian 
vector bundle with Hermitian connection over M . For any p ∈ N∗, write Lp for the p-th 
tensor power of L, and set

Ep = Lp ⊗ E. (2.6)

Let hEp , ∇Ep be induced by hL, hE and ∇L, ∇E on Ep.
For any b ∈ B, set Xb = π−1(b). Let ωb and gTX

b be the symplectic form and Rie-
mannian metric induced on Xb by restriction of ω and gTX , and let dvXb

be the volume 
form on Xb defined by

dvXb
= ωn

b

n! . (2.7)

Then dvXb
is the Riemannian volume form of (Xb, gTX

b ) compatible with the orientation 
induced by ωb. Let Lb, Eb, Ep,b, T (1,0)Xb be the vector bundles over Xb induced by 
restriction of L, E, Ep, T (1,0)X. We can then see C∞(M, Ep) as the space of smooth 
sections of an infinite dimensional vector bundle with fibre C∞(Xb, Ep,b) at b ∈ B. For 
any p ∈ N∗, we endow it with the L2-Hermitian product 〈·, ·〉p, defined for any b ∈ B

and s1, s2 ∈ C∞(Xb, Ep,b) by

〈s1, s2〉p,b =
∫
Xb

〈s1(x), s2(x)〉Ep,b
dvXb

(x). (2.8)

For any p ∈ N∗, the Bochner Laplacian ΔEp is the differential operator acting on 
C∞(M, Ep) by the formula

ΔEp = −
2n∑[

(∇Ep
ej )2 −∇Ep

∇TX
ej

ej

]
, (2.9)
j=1
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where {ej}2n
j=1 is any local orthonormal frame of (TX, gTX). For any p ∈ N∗ and any 

Hermitian endomorphism Ψ ∈ C∞(M, End(E)), the renormalized Bochner Laplacian is 
the second order differential operator Δp,Ψ acting on C∞(M, Ep) by

Δp,Ψ = ΔEp − 2πnp− Ψ, (2.10)

where Ψ denotes the operator of pointwise multiplication by Ψ. We fix the endomorphism 
Ψ ∈ C∞(M, End(E)) and simply write Δp for the associated renormalized Bochner 
Laplacian.

For any b ∈ B and p ∈ N∗, let L2(Xb, Ep,b) be the completion of C∞(Xb, Ep,b) with 
respect to 〈·, ·〉p,b. Then Δp induces by restriction an elliptic self-adjoint operator Δp,b

on L2(Xb, Ep,b), which by standard elliptic theory has discrete spectrum contained in 
R. The following theorem comes essentially from [40, Cor.1.2], and can be deduced from 
the manifest uniformity in the parameters of its proof in [40, §3].

Theorem 2.2. For any U ⊂⊂ B, there exist C̃, C > 0 such that for any b ∈ U and 
p ∈ N∗,

Spec(Δp,b) ⊂ [−C̃, C̃] ∪ [4πp− C,+∞[. (2.11)

Furthermore, the direct sum

Hp,b =
⊕

λ∈Spec(Δp,b)
λ∈[−C̃,C̃]

Ker(λ− Δp,b) (2.12)

is naturally included in C∞(Xb, Ep,b), and there is p0 ∈ N such that for any b ∈ U and 
p � p0, we have

dim Hp,b =
∫
X

Td(T (1,0)Xb) ch(Eb) exp(pωb), (2.13)

where Td(T (1,0)Xb) represents the Todd class of T (1,0)Xb and ch(Eb) represents the 
Chern character of Eb.

The right hand side of (2.13) is an integer depending smoothly on b ∈ B, thus locally 
constant in b ∈ B. In view of Theorem 2.2, we will assume B compact from now on, and 
fix p0 ∈ N with C̃ < 4πp0 −C and such that (2.13) is satisfied for all p � p0 and b ∈ B. 
As B is connected, this implies that dim Hp,b does not depend on b ∈ B. Following [13, 
§9.2], we can define the orthogonal projection operator Pp,b from C∞(Xb, Ep,b) to Hp,b

with respect to the L2-Hermitian product (2.8) by the following contour integral in the 
complex plane,
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Pp,b =
∫
Γ

(λ− Δp,b)−1
dλ, (2.14)

where Γ is a circle of centre 0 and radius a > 0 such that C̃ < a < 4πp −C. This shows 
that the projection operators Pp,b depend smoothly on b ∈ B, and as the dimension of 
Im(Pp,b) = Hp,b is constant in b ∈ B, this defines a finite dimensional bundle over B
with fibre Hp,b at b ∈ B. We write this bundle Hp, and we endow it with the Hermitian 
structure hHp given by the L2-Hermitian product (2.8) restricted to Hp,b for all b ∈ B. 
By convention, we take Hp,b = {0} for all b ∈ B, so that Hp is the trivial bundle over 
B, whenever p < p0. The family {Hp}p∈N∗ of Hermitian vector bundles over B is called 
the quantum bundle of π : M → B.

As Pp,b is a projection operator on a finite dimensional space for all p ∈ N∗, it has 
smooth Schwartz kernel with respect to dvXb

, depending smoothly on b ∈ B. Specifically, 
let M ×B M be the fibred product of M with itself over B, and write π1, π2 for the first 
and second projections from M ×B M to M . For any vector bundles F1 and F2 over M , 
we define the fibred tensor product of F1 and F2 over B as a vector bundle F1 �B F2
over M ×B M by the formula

F1 �B F2 = π∗
1F1 ⊗ π∗

2F2. (2.15)

Then there exists Pp(., .) ∈ C∞(M ×B M, Ep �B E∗
p) such that for all b ∈ B, for all 

s ∈ C∞(Xb, Ep,b) and all x ∈ Xb, we get

(Pp,bs) (x) =
∫
Xb

Pp(x, y)s(y)dvXb
(y). (2.16)

We will call Pp(·, ·) the relative Bergman kernel of Ep over π : M → B. Via (2.16), this 
defines in turn a projection operator Pp from C∞(M, Ep) to Ker(Δp) = C∞(B, Hp), 
called the relative Bergman projection on Hp over π : M → B. On the other hand, for 
any couple of kernels K1,p(·, ·) and K2,p(., .) ∈ C∞(M ×B M, Ep �B E∗

p), we will denote 
K1,pK2,p(., .) ∈ C∞(M ×B M, Ep �B E∗

p) for the kernel defined for any b ∈ B, x, y ∈ Xb

by

K1,pK2,p(x, y) =
∫
X

K1,p(x,w)K2,p(w, y)dvXb
(w). (2.17)

For any v ∈ C∞(B, TB), consider ∇Ep

vH as a first order differential operator acting on 
C∞(M, Ep). This can be seen as the contraction with v ∈ C∞(B, TB) of a connection on 
the infinite dimensional vector bundle of fibrewise smooth sections. The L2-Hermitian 
connection on Hp over B is defined for any v ∈ C∞(B, TB) by

∇Hp
v = Pp∇Ep

HPp. (2.18)

v
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By an argument of [17, Th.1.14], ∇Ep

vH preserves the L2-Hermitian product (2.8), so that 
∇Hp is a Hermitian connection on (Hp, hHp).

A prequantized fibration is called holomorphic if π : M → B is a holomorphic sub-
mersion between complex manifolds, and if (L, hL), (E, hE) are holomorphic Hermitian 
bundles equipped with their Chern connections ∇L, ∇E , which are the unique Hermi-
tian connections preserving the holomorphic structure. The relative complex structure 
J ∈ End(TX) induced by the natural holomorphic structure in the fibres is then com-
patible with ω, and this makes π : M → B into a Kähler fibration in the sense of [17, 
Def.1.4]. Set Ψ = −

√
−1ΛωR

E in (2.10), where Λω denotes the contraction by ω. For a 
proof of the following proposition, we refer to [41, §1.4.3], [22, Th.1.1], [20, Th.3.2] and 
the references therein.

Proposition 2.3. Let π : M → B be a holomorphic prequantized fibration with B compact. 
Then there exists p0 ∈ N such that for any p � p0 and b ∈ B, the space Hp,b coincides 
with the space of holomorphic sections of Ep,b inside C∞(Xb, Ep,b), and the bundle Hp

over B has a natural holomorphic structure, for which the L2-Hermitian connection ∇Hp

on Hp is the Chern connection of (Hp, hHp).

Let us finally set the following convention: for any k ∈ N, if A, B ∈ End(Rk) are 
symmetric matrices with A positive, we define det 1

2 (A +
√
−1B) to be the square root 

of det(A +
√
−1B) determined by analytic continuation along the path t �→ A + t

√
−1B

for t ∈ [0, 1].

2.2. Bergman kernels

In this section, we will use systematically the fact that all the estimates described 
in [41, Chap.4, §8.3.2] are uniform with respect to parameters. Let π : M → B be a 
prequantized fibration equipped with a relative almost complex structure J ∈ End(TX)
compatible with ω. We assume B compact, and fix p0 ∈ N as in Theorem 2.2 for U = B.

For any m ∈ N and all p ∈ N∗, we denote by | ·|Cm the Cm-norm on Ep�BE∗
p induced 

by hL, hE , ∇L, ∇E . Recall that Xb denotes the fibre of π : M → B at b ∈ B, and gTX
b

the restriction of gTX to Xb. Let dXb(·, ·) be the Riemannian distance on (Xb, gTX
b ). The 

following result comes essentially from [39, (2.5)], built on arguments of [41, §8.3.3], [42, 
§1.1].

Proposition 2.4. For any m, k ∈ N, ε > 0 and θ ∈ ]0, 1[, there is C > 0 such that for all 
p ∈ N∗, b ∈ B and x, x′ ∈ Xb satisfying dXb(x, x′) > εp−

θ
2 , the following estimate holds,

|Pp(x, x′)|Cm � Cp−k. (2.19)

Proposition 2.4 shows that the study of the asymptotics in p ∈ N∗ of the Bergman 
kernel localizes around the diagonal of the fibres. To describe asymptotic estimates for 
the Bergman kernel near the diagonal, we will need the following definition.
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Definition 2.5. Let ψ be a smooth map from the total space of TX to M , and for any 
x ∈ M , write ψx : TxX → M for the restriction of ψ to TxM . We say that ψ is a smooth 
family of vertical charts if for any x ∈ M , the image of ψx is included in Xπ(x), such that 
ψx(0) = x and its differential dψx,0 : TxX → TxM at 0 induces the canonical injection 
of TxX into TxM .

Using partitions of unity, it is easy to see that smooth families of vertical charts always 
exist. We fix one of them for the rest of the section. For any x ∈ M and ε > 0, let | · |x be 
the norm of (TxX, gTxX) and let BTxX(0, ε) be the open ball in TxX of radius ε. Choose 
ε0 > 0 so small that for any x ∈ M , the map ψx induces a diffeomorphism between 
BTxX(0, ε0) and a neighbourhood Ux of x in Xπ(x). Identify L, E over Ux with Lx, Ex

through parallel transport with respect to ∇L, ∇E along radial lines of BTxX(0, ε0) in 
the chart induced by ψx. Pick a unit section ex ∈ Lx and use it to identify Lx with 
C. In this way, the vector bundle Ep is identified with Ex over Ux for all p ∈ N∗, and 
this identification can be made smoothly in x ∈ M . Under the natural isomorphism 
End(Lp) � C, our formulas do not depend on this identification.

For any p ∈ N∗ and any kernel Kp(·, ·) ∈ C∞(M ×B M, Ep �B E∗
p), we write 

Kp,x(Z, Z ′) ∈ End(Ex) for its image at Z, Z ′ ∈ BTxX(0, ε0) in this trivialization. Note 
that Kp,x is a section of the pullback bundle π∗

0 End(E) over an open set of the fibred 
product π0 : TX ×M TX → M of the total space of TX with itself over M . On the 
other hand, if K ∈ π∗

0 End(E) is such a section and Fx(Z, Z ′) ∈ End(Ex) is polynomial 
in Z, Z ′ ∈ TxX for any x ∈ M , we write

FKx(Z,Z ′) = Fx(Z,Z ′)Kx(Z,Z ′). (2.20)

Recalling that two Riemannian metrics induce equivalent distances in a continuous way 
with respect to parameters, we can precise Proposition 2.4 in the following way.

Corollary 2.6. For any m, k ∈ N, ε > 0 and θ ∈ ]0, 1[, there is C > 0 such that for 
all p ∈ N∗ and x ∈ X, Z, Z ′ ∈ BTxX(0, ε0) such that |Z − Z ′|x > εp−

θ
2 , the following 

estimate holds,

|Pp,x(Z,Z ′)|Cm � Cp−k. (2.21)

We use the following explicit local model for the Bergman kernel from [43, (3.25)], for 
any x ∈ M, Z, Z ′ ∈ TxX,

Px(Z,Z ′) = exp
(
−π

2 |Z − Z ′|2x − π
√
−1ωX

x (Z,Z ′)
)
. (2.22)

Let | · |Cm(M) denote the Cm-norm on π∗
0 End(E) over TX ×M TX induced by hE and 

by derivation by ∇π∗
0 End(E) in the direction of M via the Levi-Civita connection. We 

can now state the following fundamental result on the near diagonal expansion of the 
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Bergman kernel, which was first established in [29, Th.4.18’] for spinc Dirac operators, 
hence in particular in the Kähler case. In this form, it comes essentially from [39, Th.2.1].

Proposition 2.7. There exists a family {Jr,x(Z, Z ′) ∈ End(Ex)}r∈N of polynomials in
Z, Z ′ ∈ TxX of the same parity as r and smooth in x ∈ M , such that for any ε > 0, 
k, m, m′ ∈ N and δ ∈ ]0, 1[, there is θ ∈ ]0, 1[ and C > 0 such that for all x ∈ M , p ∈ N∗, 
|Z|, |Z ′| < ε0p

− θ
2 ,

sup
|α|+|α′|�m

∣∣∣ ∂α

∂Zα

∂α′

∂Z ′α′

(
p−nPp,x(Z,Z ′)

−
k−1∑
r=0

JrPx(√pZ,
√
pZ ′) p− r

2
)∣∣

Cm′ (M) � Cp−
k−m

2 +δ. (2.23)

Furthermore, for all x ∈ M, Z, Z ′ ∈ TxX, we have J0,x(Z, Z ′) = IdEx
.

We will often consider expansions of this type in the sequel. To this end, we introduce 
the following notation.

Notation 2.8. For any family {Kp(., .) ∈ C∞(M ×B M, Ep �B E∗
p)}p∈N∗ , we write

p−nKp,x(Z,Z ′) ∼=
∞∑
r=0

QrKx(
√
pZ,

√
pZ ′)p− r

2 + O(p−∞), (2.24)

for {Qr,x(Z, Z ′) ∈ End(Ex)}r∈N a family of polynomials in Z, Z ′ ∈ TxX and for
Kx(Z, Z ′) ∈ End(Ex), both smooth in x ∈ M and Z, Z ′ ∈ TxX, if there exists ε > 0
such that for any k, m, m′ ∈ N and θ ∈ ]0, 1[, there is C > 0, such that for all x ∈ M

and Z, Z ′ ∈ BTxX(0, ε0) with |Z − Z ′|x > εp−
θ
2 ,

|Kp,x(Z,Z ′)|Cm � Cp−k, (2.25)

and such that for all δ ∈ ]0, 1[, there is θ ∈ ]0, 1[ and C > 0 such that for all x ∈ M , 
|Z|, |Z ′| < εp−

θ
2 ,

sup
|α|+|α′|�m

∣∣∣∣∣ ∂α

∂Zα

∂α′

∂Z ′α′

(
p−nKp,x(Z,Z ′)

−
k−1∑
r=0

Qr Kx(√pZ,
√
pZ ′)p− r

2
)∣∣

Cm′ (M) � Cp−
k−m

2 +δ. (2.26)

For any f ∈ C∞(M, End(E)), the Berezin-Toeplitz quantization of f is the family of 
endomorphisms of Hp for all p ∈ N∗, defined for any b ∈ B by the formula
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Pp,bfPp,b : C∞(Xb, Ep,b) → C∞(Xb, Ep,b), (2.27)

where f denotes the operator of pointwise multiplication by f . By (2.17), this oper-
ator admits a smooth Schwarz kernel with respect to dvXb

. The following asymptotic 
expansion in p ∈ N∗ is a consequence of Corollary 2.6 and Proposition 2.7. It was first 
established in [41, Lem.4.6] for spinc Dirac operators, hence in particular in the Kähler 
case. In this form, it comes essentially from [35, Lem.3.3].

Lemma 2.9. There exists a family {Qr,x(f)(Z, Z ′) ∈ End(Ex)}r∈N of polynomials in 
Z, Z ′ ∈ TxX of the same parity as r, smooth in x ∈ M , such that

p−n(Pp,bfPp,b)(Z,Z ′) ∼=
∞∑
r=0

Qr(f)Px(√pZ,
√
pZ ′)p− r

2 + O(p−∞). (2.28)

Furthermore, for all x ∈ M, Z, Z ′ ∈ TxX, we have Q0,x(f)(Z, Z ′) = f(x).

2.3. Trivialization of fibrations

In Section 3.3, we will be mainly concerned with the study of prequantized fibrations 
restricted over paths parametrized by t ∈ [0, 1]. Keeping this in mind, we consider in 
this section the case of a prequantized fibration π : M → [0, 1].

Let ∂t be the canonical vector field of [0, 1] and recall that ∂H
t denotes its horizontal 

lift to THM in TM . Set X := π−1(0). Then there is a unique diffeomorphism τ between 
[0, 1] ×X and M such that for any t ∈ [0, 1] and x0 ∈ X,

τ(0, x0) = x0 and ∂

∂t
τ(t, x0) = ∂H

t,x0
. (2.29)

The fibration coincides via τ with the first projection π : [0, 1] ×X → X. By (1.1) and 
(2.1), for any vertical vector field v ∈ C∞(M, TX), we have

RL(∂H
t , v) = 0. (2.30)

This shows parallel transport with respect to ∇L along horizontal paths of [0, 1] ×X via 
τ identifies (L, hL, ∇L) over [0, 1] ×X with the pullback of a fixed Hermitian line bundle 
with connection over X, which we still denote by (L, hL, ∇L). In particular, we have

∇L
∂H
t

= ∂

∂t
and

[
∂

∂t
,∇L

]
= 0. (2.31)

By (1.1), we deduce that ω is identified via τ with the pullback of a fixed symplectic 
form ωX ∈ Ω2(X, R) over X, so that the restriction of ω to Xt � X does not depend on 
t ∈ [0, 1]. Then the volume form on the fibre X induced by ω as in (2.7) does not depend 
on t ∈ [0, 1] either. We write Jt, gTX

t , Et for the restriction of J, gTX , E to X � Xt
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over t ∈ [0, 1]. Let τEt : E0 → Et be the vector bundle isomorphism induced by parallel 
transport with respect to ∇E along horizontal curves of [0, 1] ×X.

Let ψ be a smooth family of vertical charts over π : [0, 1] ×X → [0, 1] such that its 
restriction ψt : TX → X over the fibre at t ∈ [0, 1] does not depend on t. Fix x0 ∈ X, 
and consider the trivialization around x0 as in Section 2.2. Identify Tx0X with R2n using 
an orthonormal basis {ej}nj=1 of (Tx0X, gTX

0 ) such that

J0e2j = e2j+1 and J0e2j+1 = −e2j . (2.32)

Then ωX
x0

induces the standard symplectic form Ω on R2n in this identification. Write 
| · |t for the norm on R2n induced by gTX

t , so that in particular | · |0 is the standard norm 
of R2n. Then the local model (2.22) of the Bergman kernel on (Tx0X, Jt) becomes

Pt,x0(Z,Z ′) = exp
(
−π

2 |Z − Z ′|2t − π
√
−1Ω(Z,Z ′))

)
, (2.33)

for all Z, Z ′ ∈ R2n and t ∈ [0, 1].
We end this section with the following definition, which generalizes the setting de-

scribed above.

Definition 2.10. A prequantized fibration π : M → B is said to be tautological if there is 
a fibration map M � B ×X such that the associated line bundle (L, hL, ∇L) over M is 
the pullback of a Hermitian line bundle with connection over X by the second projection 
π2 : B ×X → X.

If J ∈ End(TX) is a relative compatible almost complex structure over a tautological 
fibration, we write Jb for the restriction of J to X � Xb over b ∈ B. Then J can be 
seen as a family of compatible almost complex structures on a fixed symplectic manifold 
(X, ωX), depending smoothly on b ∈ B.

3. Toeplitz operators

In Section 3.1, we study the local model for the composition of Bergman kernels 
associated with different complex structures via the identifications of Section 2.3. In Sec-
tion 3.2, we study the corresponding generalization of a Toeplitz operator. In Section 3.3, 
we use these results to show that the parallel transport in the quantum bundle over a 
path of complex structures is a such a Toeplitz operator, proving Theorem 1.1.

3.1. Local model

Let Z := (Z1, . . . , Z2n) ∈ R2n denote the real coordinates of R2n. Let 〈·, ·〉 be the 
canonical scalar product on R2n, and write | ·| for the associated norm. Let J0 ∈ End(R2n)
be the complex structure defined for all 1 � j � n by
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J0
∂

∂Z2j
= − ∂

∂Z2j−1
and J0

∂

∂Z2j−1
= ∂

∂Z2j
. (3.1)

Then 〈·, ·〉 is J0-invariant, and Ω(·, ·) = 〈J0·, ·〉 defines a J0-invariant antisymmetric non-
degenerate form on R2n, called the canonical symplectic form.

Let now Jt ∈ End(R2n) satisfying J2
t = −IdR2n be a smooth one-parameter family 

of compatible complex structures on R2n, so that Ω is Jt-invariant and the formula 
〈·, ·〉t = Ω(·, Jt·) defines a scalar product on R2n, for all t ∈ R. Note that 〈·, ·〉t and 〈·, ·〉
are related by

〈·, ·〉t = 〈(−J0Jt)·, ·〉 . (3.2)

In particular −J0Jt ∈ End(R2n) is positive symmetric, as well as its inverse −JtJ0. We 
write | · |t for the norm induced on R2n by 〈·, ·〉t.

Recall the local model (2.33) for the Bergman kernel in R2n associated to Jt for any 
t ∈ R, which is given for any Z, Z ′ ∈ R2n by

Pt(Z,Z ′) = exp
(
−π

2 |Z − Z ′|2t − π
√
−1Ω(Z,Z ′))

)
= exp

(
−π

2 〈(−J0Jt)(Z − Z ′), (Z − Z ′)〉 − π
√
−1Ω(Z,Z ′))

)
.

(3.3)

In particular, we have Pt(Z, Z ′) = Pt(Z ′, Z). Note that the canonical Lebesgue measure 
dZ of R2n is induced by the Liouville form of Ω, and thus corresponds to the Riemannian 
volume form of 〈·, ·〉t for all t ∈ [0, 1]. For any t ∈ R, let Ht ⊂ L2(R2n) be defined by

Ht := {f ∈ L2(R2n) | Z �→ f(Z)eπ
2 |Z|2 is holomorphic for Jt}. (3.4)

Then as explained in [42, §1.4], Pt(·, ·) is the Schwartz kernel with respect to dZ of the 
orthogonal projection Pt : L2(Rn) → Ht, and in particular we have PtPt = Pt. The 
Schwartz kernel of the composition PtP0 is given for any Z, Z ′ ∈ R2n by the formula

PtP0(Z,Z ′) =
∫

R2n

Pt(Z, Z̃)P0(Z̃, Z ′)dZ̃. (3.5)

Let C2n = V
(1,0)
t ⊕ V

(0,1)
t be the splitting of C2n = R2n ⊗R C into the eigenspaces 

of Jt corresponding to the eigenvalues 
√
−1 and −

√
−1. The corresponding projections 

P
(1,0)
t , P (0,1)

t from C2n to V (1,0)
t , V (0,1)

t are given by the formulas

P
(1,0)
t = 1 −

√
−1Jt

2 and P
(0,1)
t = 1 +

√
−1Jt

2 . (3.6)

For any t ∈ R, define the symmetric positive endomorphisms

A0
t =

(
Id − J0Jt

)−1

and At
0 =

(
Id − JtJ0

)−1

, (3.7)
2 2
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and set

Π0
t = A0

tP
(1,0)
0 and Πt

0 = At
0P

(1,0)
t . (3.8)

Then we have the following identities,

Π0
tP

(1,0)
t = P

(1,0)
t and Πt

0P
(1,0)
0 = P

(1,0)
0 ,

P
(1,0)
t Π0

t = Π0
t and P

(1,0)
0 Πt

0 = Πt
0,

(3.9)

which, together with (3.8), show that Π0
t , Πt

0 ∈ End(C2n) are precisely the projection 
operators onto V (1,0)

t , V (1,0)
0 with kernel V (0,1)

0 , V (0,1)
t . In particular, they induce a split-

ting

C2n = V
(1,0)
t ⊕ V

(0,1)
0 , (3.10)

for all t ∈ R. Their complex conjugates Π0
t , Πt

0 ∈ End(C2n) are the projection operators 
onto V (0,1)

t , V (0,1)
0 with kernel V (1,0)

0 , V (1,0)
t , and induce a splitting of C2n which is 

complex conjugate to (3.10). Note that these projections all have positive symmetric 
real part given by (3.7).

The following result is an explicit computation of the kernel (3.5), which is going to 
be our local model in the next section.

Lemma 3.1. For any Z, Z ′ ∈ R2n, the following formula holds

PtP0(Z,Z ′) = det(A0
t )

1
2 exp

(
− π

[〈
Πt

0(Z − Z ′), (Z − Z ′)
〉

+
√
−1Ω(Z,Z ′)

] )
. (3.11)

Furthermore, for any F (Z) ∈ C[Z] homogeneous, there exists Q(F )(Z) ∈ C[Z] of the 
same parity such that for any Z, Z ′ ∈ R2n,∫

R2n

Pt(Z, Z̃)F (Z̃)P0(Z̃, Z ′)dZ̃ = Q(F )(Z)PtP0(Z,Z ′). (3.12)

Finally, for any B ∈ End(C2n) and Z, Z ′ ∈ R2n, the following formulas hold,∫
R2n

Pt(Z, Z̃)〈B(Z − Z̃), (Z − Z̃)〉P0(Z̃, Z ′)dZ̃

=
(
〈BΠ0

t (Z − Z ′),Π0
t (Z − Z ′)〉 + 1

2π Tr[A0
tB]

)
PtP0(Z,Z ′),∫

R2n

Pt(Z, Z̃)〈B(Z ′ − Z̃), (Z ′ − Z̃)〉P0(Z̃, Z ′)dZ̃

=
(
〈BΠt

0(Z − Z ′),Πt
0(Z − Z ′)〉 + 1 Tr[At

0B]
)

PtP0(Z,Z ′).

(3.13)
2π
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Proof. Let Z, Z ′ ∈ R2n be fixed, and recall that Ω(·, ·) = 〈J0·, ·〉. Through the change of 
variable Z̃ �→ Z̃ + Z and using (3.5), we get

PtP0(Z,Z ′) =
∫

R2n

exp
(
− π

2
[
〈(−J0Jt)Z̃, Z̃〉 + |Z̃ + (Z − Z ′)|2

+ 2
√
−1Ω(Z, Z̃) + 2

√
−1Ω(Z̃ + Z,Z ′)

])
dZ̃

=
∫

R2n

exp
(
− π

2
[
〈(Id − J0Jt)Z̃, Z̃〉 + 4〈Z̃, P

(0,1)
0 (Z − Z ′)〉

])
dZ̃

exp
(
− π

2
[
|Z − Z ′|2 + 2

√
−1Ω(Z,Z ′)

])
.

(3.14)

By (3.7) and the classical formula for Gaussian integrals, we then get

PtP0(Z,Z ′) = det(A0
t )

1
2 exp

(
π〈A0

tP
(0,1)
0 (Z − Z ′), P (0,1)

0 (Z − Z ′)〉
)

exp
(
− π

2
[
|Z − Z ′|2 + 2

√
−1Ω(Z,Z ′)

])
. (3.15)

From (3.7), we know that −J0A
0
tJ0 = (−J0Jt)A0

t = At
0, and in particular, we get the 

identities

A0
t + At

0 = (1 + (−J0Jt))A0
t = 2 IdR2n

A0
tJ0 = J0A

t
0 = At

0Jt ,

P
(1,0)
0 A0

tP
(1,0)
0 = 1

4
(
A0

t −At
0 −

√
−1J0A

0
t +

√
−1A0

tJ0
)
.

(3.16)

Recall that A0
t and At

0 are symmetric. Using (3.6), (3.8) and these identities, we can 
rewrite (3.15) into

PtP0(Z,Z ′) = det(A0
t )

1
2 exp

(
− π

4 〈(A
t
0 −A0

t )(Z − Z ′), (Z − Z ′)〉
)

exp
(
− π

4
[
− 2

√
−1〈A0

tJ0(Z − Z ′), Z − Z ′〉
])

exp
(
− π

4
[
〈(At

0 + A0
t )(Z − Z ′), Z − Z ′〉 + 4

√
−1Ω(Z,Z ′)

])
= det(A0

t )
1
2 exp

(
− π

[〈
Πt

0(Z − Z ′), (Z − Z ′)
〉

+
√
−1Ω(Z,Z ′)

] )
.

(3.17)

This implies (3.11). The computations leading to (3.12) and (3.13) are analogous to 
(3.14)-(3.17), applying the classical formula for the integral of a Gaussian function mul-
tiplied by a polynomial. Note that the second equality of (3.13) can be deduced from the 
first using Pt(Z, Z ′) = Pt(Z ′, Z) and exchanging the roles of 0 and t. �
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We recover from (3.11) with t = 0 the identity P0P0 = P0 characterizing projection 
operators. For t = 0, the formulas (3.12) and (3.13) are consequences of [43, §2]. For any 
t ∈ R, set

μt = exp

⎛⎝ t∫
0

1
4 Tr

[
Π0

u

∂

∂u
(−J0Ju)

]
du

⎞⎠ . (3.18)

We deduce from Lemma 3.1 the following local model for the parallel transport in the 
bundle of holomorphic sections along the path t �→ Jt for t ∈ R.

Proposition 3.2. For any t ∈ [0, 1], the following formula holds,

Pt

(
∂

∂t
PtP0

)
= −1

4 Tr
[
Π0

t

∂

∂t
(−J0Jt)

]
PtP0. (3.19)

In particular, we have

Pt
∂

∂t
(μtPtP0) = 0. (3.20)

Furthermore, the following equality holds,

PtP0(0, 0) = |μt|−2. (3.21)

Proof. First note that for any Z, Z ′ ∈ R2n, we have

∂

∂t
Pt(Z,Z ′) = −π

2

〈
∂

∂t
(−J0Jt)(Z − Z ′), (Z − Z ′)

〉
Pt(Z,Z ′)

= −π

2

〈(
−Jt

∂

∂t
Jt

)
(Z − Z ′), (Z − Z ′)

〉
t

Pt(Z,Z ′).
(3.22)

Differentiating the identity J2
t = −Id with respect to t ∈ R, we get the formulas 

P
(0,1)
t

(
∂
∂tJt

)
=

(
∂
∂tJt

)
P

(1,0)
t and Tr[−Jt

∂
∂tJt] = 0. On the other hand, in (3.6)-(3.9)

and in Lemma 3.1, we are free to replace 0 by u for any u ∈ R. Setting t = u, we get 
At

t = IdR2n , Πt
t = P

(0,1)
t , PtPu = Pt, so that using (3.13), we get∫

R2n

Pt(Z, Z̃) ∂
∂t

Pt(Z̃, Z ′)dZ̃

= −π

2

〈(
−Jt

∂

∂t
Jt

)
P

(1,0)
t (Z − Z ′), P (1,0)

t (Z − Z ′)
〉

t

Pt(Z,Z ′)

− 1
4 Tr

[
−Jt

∂

∂t
Jt

]
Pt(Z,Z ′)

= −π
〈(

∂ (−J0Jt)
)
P

(1,0)
t (Z − Z ′), (Z − Z ′)

〉
Pt(Z,Z ′).

(3.23)
2 ∂t
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This can also be deduced by the analogous computations in [43, §2]. We then deduce 
(3.19) from (3.13) and (3.23), using the fact from (3.9) that P (1,0)

t Π0
t = 0 and the fact 

from (3.7) that A0
tJ0 = JtA

0
t , so that (3.8) implies Π0

t = P
(0,1)
t A0

t . Then (3.20) is a 
straightforward consequence of (3.18) and (3.19) using PtPt = Pt. Finally, recall from 
(3.8) that At

0 = Πt
0 + Πt

0, and note that

∂

∂t
det(A0

t )
1
2 = −1

4 Tr
[
A0

t

∂

∂t
(−J0Jt)

]
det(A0

t )
1
2 . (3.24)

Then as A0
0 = Id, formula (3.21) follows from (3.11) and (3.18) by integrating (3.24). �

We end this section with a study of the holomorphic properties of our local model. 
Let z = (z1, . . . , zn) ∈ Cn denote the complex coordinates of Cn � R2n, defined by 
zj = Z2j +

√
−1Z2j+1 for all 1 � j � n. Then by the results of [43, §2], or by explicit 

computations from (3.3), we have the following.

Lemma 3.3. For any F (Z) ∈ C[Z], there is Q̃(F )(z, ̄z′) ∈ C[z, ̄z′] in the complex coordi-
nates above such that∫

R2n

P0(Z, Z̃)F (Z̃)P0(Z̃, Z ′)dZ̃ = Q̃(F )(z, z̄′)P0(Z,Z ′). (3.25)

An important remark at this point is that the statement of Lemma 3.3 does not 
depend on the choice of real coordinates Z, Z ′ ∈ R2n, so that Lemma 3.3 holds replacing 
J0 by Jt in all that precedes, for any t ∈ R. In fact, the complex coordinates of (R2n, J0)
described above correspond to the basis of V (1,0)

0 ⊂ C2n given by

∂

∂zj
= P

(1,0)
0

∂

∂Z2j
, for all 1 � j � n. (3.26)

For any t ∈ R, recall (3.10) and set

∂

∂zt,j
= Π0

t

∂

∂Z2j
, for all 1 � j � n. (3.27)

Let zt = (zt,1, . . . , zt,n) be the associated complex coordinates of (R2n, Jt). Then using 
an appropriate change of basis, we have the following straightforward generalization of 
Lemma 3.3.

Lemma 3.4. For any F (Z) ∈ C[Z] and for any t ∈ R, there is Q̃t(F )(zt, ̄z′t) ∈ C[zt, ̄z′t]
in the complex coordinates of (R2n, Jt) defined above such that∫

Pt(Z, Z̃)F (Z̃)Pt(Z̃, Z ′)dZ̃ = Q̃t(F )(zt, z̄′t)P0(Z,Z ′). (3.28)

R2n
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By the description of Π0
t as the projection operator on V (1,0)

t with kernel V (0,1)
0 , we 

see that (3.27) defines a basis of V (1,0)
t , so that{

∂

∂zt,j
,

∂

∂z̄j

}n

j=1
(3.29)

defines a basis of Cn = V
(1,0)
t ⊕ V

(0,1)
0 as in (3.10).

For any t ∈ R and F ∈ C[Z, Z ′], write FPt the operator on L2(R2n) whose Schwartz 
kernel with respect to dZ is given by FPt(Z, Z ′) = F (Z, Z ′)Pt(Z, Z ′). In the same way, 
we write FPtP0 for the operator with Schwartz kernel F (Z, Z ′)PtP0(Z, Z ′). We can 
now state the following fundamental property of our local model.

Proposition 3.5. For any F (Z, Z ′) ∈ C[Z, Z ′], there exists Qt(F )(zt, ̄z′) ∈ C[zt, ̄z′] of the 
same parity as F for any t ∈ R, such that

Pt(FPtP0)P0 = Qt(F )PtP0. (3.30)

Proof. The existence of a polynomial Qt(F ) in Z, Z ′ ∈ R2n of the same parity as F
satisfying (3.30) follows from two applications of (3.12) and the fact that PtPt = Pt. 
This together with the definition (3.30) of Qt(F ) gives

Pt(Qt(F )PtP0) = Pt(FPtP0)P0 = Qt(F )PtP0. (3.31)

Thus considering Qt(F )(Z, Z ′) as a polynomial in Z ∈ R2n, we get from Lemma 3.4 that 
Qt(F ) depends only on zt and Z ′. Using

(Qt(F )PtP0)P0 = Pt(FPtP0)P0 = Qt(F )PtP0, (3.32)

we deduce in the same way that Qt(F ) depends only on zt and z̄′, from which we deduce 
Proposition 3.5. �
3.2. Criterion for Toeplitz operators

Consider the setting and notations of Section 2.3, and let p0 ∈ N as in Theorem 2.2
for U = B be fixed. Recall that we identified Ep over [0, 1] ×X with Ep,t = Et⊗Lp over 
X for any t ∈ [0, 1], where (L, hL, ∇L) does not depend on t. Then for any t ∈ [0, 1] and 
gt ∈ C∞(X, Et ⊗ E∗

0 ), we can define the Berezin-Toeplitz quantization of gt as a family 
indexed by p ∈ N∗ of linear maps from Hp,0 to Hp,t by the formula

Pp,tgtPp,0 : C∞(X,Ep,0) → C∞(X,Ep,t). (3.33)

As dim Hp,t < ∞ for all p ∈ N∗ and t ∈ R, this operator admits a smooth Schwartz 
kernel in C∞(X ×X, E∗

p,t � Ep,0) with respect to dvX . Recalling Notation 2.8, we then 
have the following result.
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Lemma 3.6. There is a family 
{
Qr,t,x0(g)(Z,Z ′) ∈ Et,x0 ⊗ E∗

0,x0

}
r∈N of polynomials in 

Z, Z ′ ∈ R2n of the same parity as r, smooth in x0 ∈ X and t ∈ [0, 1], such that the 
following asymptotic expansion holds,

p−n(Pp,tgtPp,0)x0(Z,Z ′) ∼=
∞∑
r=0

Qr,t,x0(g)Pt,x0P0(
√
pZ,

√
pZ ′)p− r

2 + O(p−∞). (3.34)

Furthermore, for all x0 ∈ X, t ∈ [0, 1], Z, Z ′ ∈ R2n, we have

Q0,t,x0(g)(Z,Z ′) = gt(x0). (3.35)

Proof. Using the results of Section 3.1, and in particular Lemma 3.1, the proof of (3.34)
and (3.35) is a straightforward adaptation of the proof of Lemma 2.9 in [35, Lem.3.3], 
using the asymptotic expansion (2.23) of the Bergman kernel. �

For any t ∈ R and p ∈ N∗, let ‖ · ‖p,0,t be the operator norm induced by ‖ · ‖p,0 and 
‖ ·‖p,t on the space L(Hp,0, Hp,t) of bounded operators from Hp,0 to Hp,t. The following 
fundamental result is a converse to Lemma 3.6, and gives a criterion for a sequence of 
operators in L(Hp,0, Hp,t) for all p ∈ N∗ to behave like a Toeplitz operator, that is 
to admit an asymptotic expansion as p → +∞ in terms of Berezin-Toeplitz operators 
(3.33).

Theorem 3.7. Let {Tp,t ∈ L(Hp,0, Hp,t)}p∈N∗ be a family of bounded operators from Hp,0
to Hp,t, smooth in t ∈ [0, 1], and assume that for any p ∈ N∗ and t ∈ R, the induced 
operator Tp,t = Pp,tTp,tPp,0 : C∞(X, Ep,0) → C∞(X, Ep,t) satisfies

p−nTp,t(Z,Z ′) ∼=
∞∑
r=0

Qr,t,x0Pt,x0P0(
√
pZ,

√
pZ ′)p− r

2 + O(p−∞), (3.36)

for a family {Qr,t,x0(Z, Z ′) ∈ Et,x0 ⊗ E∗
0,x0

}r∈N of polynomials in Z, Z ′ ∈ R2n of the 
same parity as r, smooth in x0 ∈ X and t ∈ [0, 1].

Then there exist a family {gl,t ∈ C∞(X, Et ⊗E∗
0 )}l∈N , smooth in t ∈ [0, 1], such that 

for all k � 0, there exists Ck > 0 such that

∥∥∥Tp,t −
k−1∑
l=0

p−lPp,tgl,tPp,0

∥∥∥
p,0,t

� Ckp
−k, (3.37)

for all p ∈ N∗ and t ∈ [0, 1].

The proof of Theorem 3.7 is parallel to the proof of the analogous results in [43, §4.2], 
[35, §4], and will occupy the rest of this section. The main additional difficulty is that we 
are working with two sets z, zt of complex coordinates of R2n for two different complex 
structures J0 and Jt as in Section 3.1. As it will appear in the proof of Lemma 3.12, this 
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is solved using the fact that the spaces V (1,0)
0 and V (0,1)

t in (3.10) are transverse in C2n. 
Another difference is that we can’t assume Tp,t to be self-adjoint in this context.

Following [43, §4.2] and for any t ∈ [0, 1], we will construct inductively the sequence 
{gl,t ∈ C∞(X, Et ⊗ E∗

0 )}l∈N such that (3.37) holds. Let us start with the case k = 0 in 
(3.37). For any t ∈ [0, 1] and x0 ∈ X, we set

g0,t(x0) = Q0,t,x0(0, 0) ∈ Et,x0 ⊗ E∗
0,x0

. (3.38)

Then g0,t(x0) is smooth in t ∈ [0, 1]. We will show that

Tp,t = Pp,tg0,tPp,0 + O(p−1). (3.39)

The proof of (3.39) is the result of Proposition 3.8 and Proposition 3.14. In the proof of 
these propositions, we fix t ∈ [0, 1].

Proposition 3.8. In the conditions of Theorem 3.7, we have

Q0,t,x0(Z,Z ′) = Q0,t,x0(0, 0) ∈ Et,x0 ⊗ E∗
0,x0

(3.40)

for all t ∈ [0, 1], x0 ∈ X and Z, Z ′ ∈ R2n.

Proof. The proof is divided in the series of Lemmas Lemma 3.9–Lemma 3.13. Recall 
from Section 3.1 that z′ denotes the holomorphic coordinate in Z ′ ∈ R2n associated to 
J0,x0 as in (3.26) and that zt denotes the holomorphic coordinate in Z ∈ R2n associated 
to Jt,x0 as in (3.27). Our first observation is as follows.

Lemma 3.9. Q0,t,x0 only depends on zt, ̄z′, so that there is Qt,x0(zt, ̄z′) ∈ Et,x0 ⊗ E∗
0,x0

, 
polynomial in zt, z̄′, such that for all Z, Z ′ ∈ R2n,

Q0,t,x0(z, z̄′) = Q0,t,x0(Z,Z ′). (3.41)

Proof. By (3.36), we know that

p−nTp,t,x0(Z,Z ′) ∼= Qr,t,x0Pt,x0Px0(
√
pZ,

√
pZ ′) + O(p− 1

2 ). (3.42)

By Proposition 2.7 in the context of Section 2.3, we thus get in the notations of Sec-
tion 3.1,

p−n(Pp,tTp,tPp,0)x0(Z,Z ′) ∼= Pt,x0(Q0,t,x0Pt,x0P0)P0(
√
pZ,

√
pZ ′) + O(p− 1

2 ).(3.43)

On the other hand, from (3.42), (3.43) and the formula Pp,tTp,t = Tp,t, we deduce

Q0,t,x0Pt,x0P0,x0 = Pt,x0(Q0,t,x0Pt,x0P0)P0 (3.44)

From Proposition 3.5, this implies that Q0,t,x0 only depends on zt, ̄z′. �
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Recall from Section 2.3 that τEt ∈ Et⊗E∗
0 is induced by parallel transport with respect 

to ∇E along horizontal lines of [0, 1] ×X going from 0 to t ∈ [0, 1]. For all Z, Z ′ ∈ R2n, 
let us write

Qx0(zt, z̄′) = τE,−1
t,x0

Q0,t,x0(zt, z̄′) ∈ End(E0,x0) , (3.45)

so that 3.9 implies Qx0(Z, Z ′) = Qx0(zt, ̄z′). For any x0 ∈ X, let Qx0 =
∑

i�0 Q
(i)
x0 be 

the decomposition of Qx0 in homogeneous polynomials Q(i)
x0 of degree i. We will show 

that Q(i)
x0 vanishes identically for i > 0, that is

Q(i)
x0

(zt, z̄′) = 0 for all x0 ∈ X, i > 0. (3.46)

The first step is to prove

Q(i)
x0

(zt, 0) = 0 for all x0 ∈ X, i > 0. (3.47)

Recall the smooth family of vertical charts ψ in Section 2.3. For x ∈ X, Z ′ ∈ R2n � TxX

and y = ψx(Z ′), set

F (i)(x, y) =Q(i)
x (0, z̄′) ∈ End(E0,x),

F̃ (i)(x, y) =
(
F (i)(y, x)

)∗
∈ End(E0,y).

(3.48)

Then F i and F̃ (i) define smooth sections on a neighbourhood of the diagonal of X ×X. 
Clearly, the F̃ (i)(x, y)’s need not be polynomials in zt and z̄′.

Denote by d(·, ·) the Riemannian distance on (X, gTX
0 ). Since we wish to define global 

operators induced by these kernels, we use a cut-off function in the neighbourhood of 
the diagonal. Pick a smooth function η ∈ C∞(R) such that η(u) = 1 for |u| � ε0/2 and 
η(u) = 0 for |u| � ε0. We denote by Pp,tPp,0F

(i) and F̃ (i)Pp,0Pp,t the operators defined 
by the kernels

η(d(x, y))(Pp,tτ
E
t Pp,0)(x, y)F (i)(x, y) and η(d(x, y))F̃ (i)(x, y)(Pp,0τ

E,−1
t Pp,t)(x, y)

(3.49)

with respect to dvX(y). Set

Tp = Tp,t −
∑
i�0

(Pp,tPp,0F
(i))p i

2 . (3.50)

From (3.34), (3.36) and (3.50), we deduce that in the sense of (2.26) for Z = 0 and any 
x0 ∈ X, we have

p−nTp,x0(0, Z ′) ∼=
∞∑
r=1

(RrPt,x0P0)(0,
√
pZ ′)p− r

2 + O(p−∞), (3.51)
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for some polynomials Rr,x0 of the same parity as r.

Lemma 3.10. There exists C > 0 such that for any p ∈ N∗ and s ∈ C∞(X, Ep,0), we 
have

‖Tps‖p,t � Cp−
1
2 ‖s‖p,0,

‖T ∗
p s‖p,t � Cp−

1
2 ‖s‖p,0.

(3.52)

Proof. This is a consequence of the vanishing of the term of order 0 in (3.51). The proof 
is the same as the proof of the analogous result in [43, Lem.4.13]. �

For any x0 ∈ X and Z, Z ′ ∈ R2n � Tx0X such that |Z|, |Z ′| < ε0, recall that 
F̃

(i)
x0 (Z, Z ′) ∈ End(E0,x0) denotes the image of F̃ (i)(x, y) ∈ End(E0,x0), with x = ψx0(Z), 

y = ψx0(Z ′) in the trivialization around x0 ∈ X defined in Section 2.3. Let us consider 
the following Taylor expansion, for any k ∈ N,

F̃ (i)
x0

(0, Z ′) =
∑
|α|�k

∂|α|F̃
(i)
x0

∂Z ′α (0, 0)
(√pZ ′)α

α! p−
|α|
2 + O(|Z ′|k+1). (3.53)

The next step of the proof of Proposition 3.8 is the following.

Lemma 3.11. For any x0 ∈ X, we have

∂|α|F̃
(i)
x0

∂Z ′α (0, 0) = 0 for i− |α| > 0. (3.54)

Proof. The definition (3.50) of Tp shows that

T ∗
p = T ∗

p,t −
∑
i�0

p
i
2 (F̃ (i)Pp,0Pp,t). (3.55)

Pick x0 ∈ X, and let us develop the sum on the right-hand side. Combining the Taylor 
expansion (3.53) with the expansion (3.34) where the roles of J0 and Jt are swapped, for 
any k � degQx0 + 1 we obtain

p−n
∑
i�0

(
F̃ (i)Pp,0Pp,t

)
x0

(0, Z ′)p i
2 ∼=

∑
i�0

∑
|α|,r�k

Qr,t,x0(τE,−1)P0Pt,x0(0,
√
pZ ′)

∂|α|F̃
(i)
x0

∂Z ′α (0, 0)
(√pZ ′)α

α! p
i−|α|−r

2 + O
(
p

deg Qx0−k−1
2

)
. (3.56)

Having in mind the second inequality of (3.52), this is only possible if for every j > 0, 
the coefficients of p j

2 in the right-hand side of (3.56) vanish. Thus, we have for any j > 0,
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degQx0∑
i=j

∑
j+r=i−|α|

Qr,t,x0(τE,−1)(0,√pZ ′)∂
|α|F̃

(i)
x0

∂Z ′α (0, 0)
(√pZ ′)α

α! = 0. (3.57)

Note that (3.48) implies that F̃ (i) = 0 for i > degQx0 , so that (3.54) automatically 
holds in that case. From (3.57), we will prove by a descending recurrence on j > 0 that 
(3.54) holds for i − |α| > j. As the first step of the recurrence, let us take j = degQx0

in (3.57). Since Q0,t,x0(τE,−1) = τE,−1
t,x0

is invertible, we get immediately F̃ (j)
x0 (0, 0) = 0

in that case. Hence (3.54) holds for i − |α| � degQx0 . Assume that (3.54) holds for 
i − |α| > j0 > 0. Then for j = j0, the coefficient with r > 0 in (3.57) is zero. By the 
invertibility of Q0,t,x0(τE,−1) = τE,−1

t,x0
once again, (3.57) reads

∑
α∈N2n

∂|α|F̃
(j0+|α|)
x0

∂Z ′α (x0, 0)
(√pZ ′)α

α! = 0, (3.58)

which entails (3.54) for i − |α| � j0. The proof of (3.54) is complete. �
Lemma 3.12. For any x0 ∈ X, we have

∂|α|Q(i)
x0

∂zαt
(0, 0) = 0, for all |α| � i . (3.59)

Therefore Q(i)
x0 (zt, 0) = 0 for all i > 0 and Z ∈ R2n, so that (3.47) holds true. Moreover,

Q(i)
x0

(0, z̄′) = 0 for all x0 ∈ X, i > 0 and all Z ∈ R2n. (3.60)

Proof. Let us start with some preliminary observations. From Lemma 3.11 and (3.56), 
we get for any x0 ∈ X,

p−n
∑
i�0

(
F̃ (i)Pp,0Pp,t

)
x0

(0, Z ′)p i
2

∼=
∑
|α|=i

∂|α|F̃
(i)
x0

∂Z ′α (0, 0)
(√pZ ′)α

α! τE,−1
t,x0

P0Pt,x0(0,
√
pZ ′) + O

(
p−

1
2

)
. (3.61)

On the other hand, taking the adjoint of (3.36) and using (3.41), (3.45) we get

p−nT ∗
p,x0

(0, Z ′) ∼= (Qx0(
√
pz′t, 0))∗ τE,−1

t,x0
P0Pt,x0(0,

√
pZ ′) + O(p− 1

2 ). (3.62)

In view of Lemma 3.10, comparing (3.55) with (3.61) and (3.62) for any x0 ∈ X gives

F̃ (i)
x0

(0, Z ′) =
(
Q(i)

x0
(z′t, 0)

)∗
+ O(|Z ′|i+1). (3.63)
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By definition (3.48) of F̃ (i), we take the adjoint of (3.63) and get

F (i)
x0

(Z, 0) = Q(i)
x0

(zt, 0) + O(|Z|i+1). (3.64)

Thus in order to prove the Lemma it suffices to show that

∂|α|

∂zα
F (i)
x0

(0, 0) = 0, for all x0 ∈ X and |α| � i . (3.65)

We prove this by induction over |α|. The case |α| = 0 immediately follows from the fact 
that Q(i)

x0 (zt, ̄z′) is a homogeneous polynomial of degree i > 0. For the induction step, 
assume that (3.65) holds for |α| = i0 < i at all x0 ∈ X. Together with (3.64), this implies 
in particular that all derivatives in x up to order i0 of F (i)(x, y) vanish for x = y. On 
the other hand, we know by definition (3.48) of F (i) that

∂

∂z′j
F (i)
x0

(0, Z ′) = 0, for all x0 ∈ X and |Z ′| < ε0 . (3.66)

Let us write jΔ : R2n → R2n × R2n for the diagonal injection. Using the fact that 
F̃ (i)(ψx(Z), ψx(Z ′)) = F̃

(i)
x (Z, Z ′) for all |Z|, |Z ′| < ε0 and x ∈ X in the coordinate 

charts ψx : TxX → X, we then deduce from the induction hypothesis that for any 
1 � j � n and x ∈ X,

∂|α|+1F
(i)
x

∂zα∂zj
(0, 0) =

(
∂

∂zj
j∗Δ

∂|α|F
(i)
x

∂zα

)
(0) − ∂|α|

∂zα
∂F

(i)
x

∂z′j
(0, 0) = 0. (3.67)

This gives (3.65). Now recall from (3.29) that the set of vectors {∂/∂zj, ∂/∂z̄j,t}1�j�n

form a basis of C2n, so that (3.64) and (3.65) implies (3.59), and this is equivalent 
to (3.47). The argument for (3.60) is analogous, setting F̃ (i)(x, y) := (Q(i)(zt, 0))∗ and 
F (i)(x, y) := (F̃ (i)(y, x))∗ in (3.48) and swapping their roles in the rest of the argument. 
This finishes the proof of Lemma 3.12. �
Lemma 3.13. We have Q(i)

x0 (zt, ̄z′) = 0 for all x0 ∈ X and i > 0.

Proof. For any x0 ∈ X, let us consider the operator

1
√
p
Pp,t

(
∇Ep

v Tp,t

)
Pp,0 with v ∈ C∞(X,TXC), vx0 = ∂

∂zt,j
. (3.68)

By (2.26) and (3.45), the operator (3.68) admits an expansion as in (3.36) except for the 
condition on the parity of the polynomials, with leading term at x0 ∈ X equal to

τE,−1
t,x0

(∂Qx0

∂zt,j

)
(√pzt,

√
pz̄′)Px0(

√
pZ,

√
pZ ′). (3.69)
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On the other hand, note that the proofs of Lemmas 3.10 to 3.12 did not use the parity 
condition on the polynomials in Theorem 3.7, so that Lemma 3.12 holds for the operator 
(3.68). Following the notations above, we thus get for i > 0,

∂Q(i+1)
x0

∂zt,j
(0, z̄′) =

(∂Qx0

∂zt,j

)(i)
(0, z̄′) = 0. (3.70)

Now (3.47) tells us that the constant term of ( ∂
∂zj,t

Qx0)(zt, ̄z′) vanishes, so that (3.70)
holds as well for i = 0. Then repeating this reasoning with the adjoint of (3.68), we 
further get for any i > 0 and 1 � j � n,

∂Q(i)
x0

∂z̄′j
(zt, 0) = 0. (3.71)

By continuing this process, we show by induction that for all x0 ∈ X, i > 0 and α ∈ Nn,

∂|α|Q(i)
x0

∂zαt
(0, z̄′) = ∂|α|Q(i)

x0

∂z̄′α
(zt, 0) = 0. (3.72)

This proves Lemma 3.13 and (3.46) holds true. �
Lemma 3.13 finishes the proof of Proposition 3.8. �
Proposition 3.14. We have

Tp,t = Pp,tg0,tPp,0 + O(p−1), (3.73)

i.e., relation (3.39) holds true in the sense of (3.37).

Proof. Comparing the asymptotic expansions (3.36) and (3.34) of both sides of (3.73)
up to order 2, as in the proof of the analogous result in [43, Prop.4.17], it suffices to 
prove that for any x0 ∈ X and Z, Z ′ ∈ R2n,

(Q1,t,x0 −Q1,t,x0(g0))(Z,Z ′) = 0. (3.74)

The left hand side of (3.74) is the polynomial associated with the first coefficient of the 
expansion as in (3.36) of

√
p(Tp,t − Pp,tg0,tPp). (3.75)

As before, we see that this operator satisfies the hypotheses of Lemmas 3.10 to 3.13, 
so that all the homogeneous components of degree i > 0 of Q1,t,x0 −Q1,t,x0(g0) vanish. 
Furthermore, Q1,t,x0 −Q1,t,x0(g0) is an odd polynomial, so that in particular its constant 
term vanishes as well. This shows (3.74). �
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By (3.73), the operator p(Tp,t − Pp,tg0,tPp,0) satisfies the hypotheses of Theorem 3.7, 
so that Proposition 3.8 and Proposition 3.14 applied to p(Tp,t − Pp,tg0,tPp,0) give
g1,t ∈ C∞(X, Et ⊗E∗

0 ) such that

Tp,t = Pp,tg0,tPp,0 + Pp,tg1,tPp,0 + O(p−2) (3.76)

We can then continue this process to get (3.37) for any q ∈ N by induction. This 
completes the proof of Theorem 3.7.

3.3. Parallel transport as a Toeplitz operator

In this section, we show that the parallel transport in the quantum bundle of Sec-
tion 2 satisfies the hypotheses of Theorem 3.7, and we compute the first coefficient of its 
asymptotic expansion (3.37) in terms of the local data of Section 3.1.

We first work in the setting of Section 2.2, so that π : M → B is a prequantized 
fibration equipped with a relative compatible complex structure J ∈ End(TX) and an 
auxiliary vector bundle (E, hE , ∇E) over M . We assume B compact and fix p0 ∈ N

in Theorem 2.2 with U = B. Recall the L2-connection ∇Hp on Hp of (2.18), for any 
p ∈ N∗.

Definition 3.15. A family of connections {∇p}p∈N∗ on the quantum bundle {Hp}p∈N∗

over B is called a Toeplitz connection if it is of the form

∇p = ∇Hp + Kp (3.77)

for any p ∈ N, with {Kp ∈ C∞(B, End(Hp) ⊗T ∗B)}p∈N∗ such that there exists a family 
{σl ∈ C∞(M, End(E) ⊗ T ∗M)}l∈N smooth in t ∈ [0, 1], such that for all k � 0 and any 
v ∈ C∞(B, TB), there exists Ck > 0 such that for all b ∈ B,

∥∥∥Kp(v) −
k−1∑
l=0

p−lPp σl(vH)Pp

∥∥∥
p,b

� Ckp
−k. (3.78)

From now on, we fix a Toeplitz connection {∇p}p∈N∗ and a path γ : [0, 1] → B. 
Let p ∈ N∗, and recall that ∂t denotes the canonical vector field on [0, 1]. The parallel 
transport along γ with respect to {∇p}p∈N∗ is the family of endomorphisms

Tp,t : Hp,γ(0) → Hp,γ(t) (3.79)

satisfying the following differential equation in t ∈ [0, 1] for any s0 ∈ Hp,γ(0) and p ∈ N∗,⎧⎪⎨⎪⎩
∇p

∂t
Tp,ts0 = 0,

T s = s .

(3.80)

p,0 0 0
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Pulling back the fibration by γ : [0, 1] → B, we can assume that B = [0, 1] and work in 
the setting of Section 2.3, where (L, hL, ∇L) is identified over [0, 1] ×X with the pullback 
of a fixed Hermitian bundle with connection over X. Then by (2.31), for any t ∈ [0, 1], 
(2.18) becomes

∇Hp

∂t
= Pp,t∇E

∂H
t
Pp,t. (3.81)

Let σ0 ∈ C∞(M, End(E) ⊗ T ∗M) be the first coefficient of the Toeplitz connection 
{∇p}p∈N∗ in (3.78), and define a connection ∇E,σ on E over M by

∇E,σ = ∇E + σ0. (3.82)

For any t ∈ [0, 1], let τE,σ
t be the parallel transport with respect to ∇E,σ along horizontal 

curves of [0, 1] ×X. For any t ∈ [0, 1], let μt ∈ C∞(X, C) be the function with value at 
x0 ∈ X given by (3.18) in the trivialization of Section 2.3 around x0 ∈ X. The following 
theorem is the central result of this paper.

Theorem 3.16. There exists a family {μl,t ∈ C∞(X, Et ⊗ E∗
0 )}l∈N , smooth in t ∈ [0, 1], 

such that for all k � 0, there exists Ck > 0 such that

∥∥∥Tp,t − k−1∑
l=0

p−lPp,tμl,tPp,0

∥∥∥
p,0,t

� Ckp
−k, (3.83)

for all p ∈ N∗ and t ∈ [0, 1]. Furthermore, its first coefficient μ0,t ∈ C∞(X, Ep,t ⊗E∗
p,0)

is given by

μ0,t = μtτ
E,σ
t . (3.84)

Proof. For any gt ∈ C∞(X, Et ⊗ E∗
0 ), smooth in t ∈ [0, 1], and for all p ∈ N∗, let us 

consider the operator

∇p
∂t
Pp,tgtPp,0 : Hp,0 → Hp,t. (3.85)

Then by (3.19), (3.34), (3.77) and (3.81), the Schwartz kernel of (3.85) satisfies the 
assumptions of Theorem 3.7. Using (3.82), the first coefficient Q0,t,x0 of its expansion 
(3.36) for any x0 ∈ X, t ∈ [0, 1], is the constant polynomial equal to

(
∇E,σ

∂H
t
gt

)
(x0) −

1
4 Tr

[
Π0

t,x0

∂

∂t
(−J0,x0Jt,x0)

]
gt(x0), (3.86)

where Π0
t,x0

∈ End(Tx0XC) is the projection to T (1,0)
x0 Xt with kernel T (0,1)

x0 X0. Let now
μ0,t ∈ C∞(X, Et⊗E∗

0 ) be the section satisfying the following ordinary differential equa-
tion in t ∈ [0, 1],



L. Ioos / Advances in Mathematics 387 (2021) 107840 33
⎧⎪⎨⎪⎩
∇E,σ

∂H
t
μ0,t − 1

4 Tr
[
Π0

t
∂
∂t (−J0Jt)

]
μ0,t = 0,

μ0,0 = IdE0 .

(3.87)

Then we have Pp,0μ0,0Pp,0 = Pp,0, and the estimate ∇p
∂t
Pp,tμ0,tPp,0 = O(p−1) holds in 

operator norm as p → +∞ by (3.86). For any k ∈ N∗, let us assume by induction that 
we have sections μl,t ∈ C∞(X, Et ⊗E∗

0 ) with μl,0 ≡ 0 for all 0 < l � k − 1, satisfying

∇p
∂t

k−1∑
l=0

p−lPp,tμl,tPp,0 = O(p−k), (3.88)

in operator norm as p → +∞. Then Theorem 3.7 applies to the left hand side of (3.88)
multiplied by pk. Let gk ∈ C∞(X, Et ⊗ E∗

0 ) denote its first coefficient in the expansion 
(3.37), and let μk,t ∈ C∞(M, Et ⊗ E∗

0 ) be the section satisfying the following ordinary 
differential equation in t ∈ [0, 1],⎧⎪⎨⎪⎩

∇E,σ
∂t

μk,t − 1
4 Tr

[
Π0

t
∂
∂t (−J0Jt)

]
μk,t + gk = 0

μk,0 = 0.
(3.89)

Then using Theorem 3.7 as above, we have ∇p
∂t

∑k
l=1 p

−lPp,tμl,tPp,0 = O(p−k−1) in 
operator norm as p → +∞. This gives a sequence {μl,t ∈ C∞(X, Ep,t ⊗E∗

p,0)}l∈N , with 
μ0,0 ≡ IdE and μl,0 ≡ 0 for all l ∈ N∗, satisfying (3.88) for all k ∈ N∗. Then by (3.80)
and (3.88), we have ∇p

∂t

(
Tp,t −

∑k−1
l=1 p−lPp,tμl,tPp,0

)
= O(p−k) in operator norm as 

p → +∞ for any k ∈ N∗, so that there exists Ck > 0 such that for any p ∈ N∗, 
s0 ∈ C∞(X, Ep,0) and t ∈ [0, 1],

∂

∂t

∥∥∥(Tp,t − k−1∑
l=1

p−lPp,tμl,tPp,0

)
s0

∥∥∥2

p,t

= 2 Re
〈
∇p

∂t

(
Tp −

k−1∑
l=1

p−lPpμl,tPp,0

)
s0,

(
Tp −

k−1∑
l=1

p−lPp,tμl,tPp,0

)
s0

〉
p,t

� 2Ckp
−k‖s0‖p,0

∥∥∥∥∥(Tp −
k∑

l=1

p−lPp,tμl,tPp,0

)
s0

∥∥∥∥∥
p,t

.

(3.90)

As Tp,0 =
∑k−1

l=1 p−lPp,0μl,0Pp,0 = Pp,0, by (3.90) and using Grönwall’s lemma, we con-
clude that Tp satisfies (3.37), with first coefficient μ0,t equal to the solution of the ordinary 
differential equation (3.86), which is precisely (3.84) by definition (3.18) of μt. �

By Lemma 3.6, Theorem 3.16 implies in particular that for any x0 ∈ X, there exists 
a family {Gr,x0(Z, Z ′) ∈ E1,x0 ⊗ E∗

0,x0
}r∈N of polynomials in Z, Z ′ ∈ R2n of the same 

parity as r and smooth in x0 ∈ X, t ∈ [0, 1], such that
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Tp,t(Z,Z ′) ∼= pn
∞∑
r=0

Gr,t,x0Pt,x0P0(
√
pZ,

√
pZ ′)p− r

2 + O(p−∞), (3.91)

in the sense of Notation 2.8, with G0,t,x0(Z, Z ′) = μt(x0)τE,σ
t (x0) for all Z, Z ′ ∈ R2n.

4. Localization formulas

In this section, we use the results of Section 3.3 to prove an asymptotic version of 
localization formulas of Lefschetz type for the action of symplectic maps, proving Theo-
rem 1.2. In Section 4.1, we deal with the case of isolated fixed point. In Section 4.2, we 
then establish the general case.

Let (X, ω) be a compact symplectic manifold, and let ϕ : X → X be a diffeomorphism.

Definition 4.1. The fixed point set Xϕ ⊂ X of a diffeomorphism ϕ : X → X is said to be 
non degenerate if Xϕ is a closed submanifold such that TXϕ = Ker(IdTX − dϕ) inside 
TX.

Assume that (X, ω) is equipped with a Hermitian line bundle (L, hL) together with a 
Hermitian connection ∇L whose curvature satisfies the prequantization condition (1.1), 
and that ϕ : X → X lifts to a bundle map ϕL : L → L preserving metric and connection, 
so that in particular ϕ preserves ω. If J0 is an almost complex structure on X compatible 
with ω, then the almost complex structure J1 defined by

J1 = dϕJ0dϕ
−1 (4.1)

is again compatible with ω. As the space of almost complex structures compatible with 
ω is contractible, there exists a path t �→ Jt joining J0 to J1 for t ∈ [0, 1], and we can 
consider the associated tautological fibration over [0, 1] as in Section 2.3. If (E, hE , ∇E)
is an auxiliary Hermitian vector bundle with Hermitian connection over [0, 1] × X, we 
suppose that ϕ lifts to a bundle map ϕE : E0 → E1 over X, preserving metric and 
connection, and we write ϕp for the induced map on Ep for any p ∈ N∗. The pullback 
of s ∈ C∞(X, Ep) by ϕp, defined for any x ∈ X by

(ϕ∗
ps)(x) = ϕ−1

p .s(ϕ(x)), (4.2)

induces by restriction a linear map ϕ∗
p : Hp,1 → Hp,0 from the quantum space associated 

with J1 to the one associated with J0.
We omit in the sequel the subscript 1 for any object depending on t evaluated at 

t = 1, and consider the local endomorphisms of Section 3.1 as functions of x0 ∈ X in 
the trivialization of Section 2.3. In particular, we write μ ∈ C∞(X, C) for the function 
whose value at x0 ∈ X is equal to μ1 in (3.18).

In this section, the notation O(p−k) is meant in its usual sense as p tends to infinity, 
uniformly in x ∈ X and t ∈ [0, 1]. The notation O(p−∞) means O(p−k) for all k ∈ N.
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4.1. Isolated fixed points

We first deal with the case of ϕ : X → X having only non-degenerate isolated fixed 
points. Recall the parallel transport operator {Tp,t}p∈N∗ from Hp,0 to Hp,t with respect 
to a Toeplitz connection {∇p}p∈N defined by (3.80) for all t ∈ [0, 1].

For any x ∈ X such that ϕ(x) = x, write λx := ϕL,−1
x ∈ C through the canonical 

identification End(L) � C. Recall the convention for square roots of complex determi-
nants stated at the end of Section 2.1. The following theorem is the main result of this 
section.

Theorem 4.2. Suppose that the fixed point set Xϕ ⊂ X of ϕ : X → X is discrete and 
non-degenerate, and write Xϕ = {x1, . . . , xq}, q ∈ N∗. Then for each 1 � j � q and 
r ∈ N, there exists aj,r ∈ C, such that for any k ∈ N and as p ∈ N∗ tends to infinity,

TrHp
[ϕ∗

pTp] =
q∑

j=1
λp
xj

k−1∑
r=0

p−raj,r + O(p−k). (4.3)

Furthermore, for any 1 � j � q, the following formula holds,

aj,0 = μ̄−1(xj) TrE [ϕE,−1
xj

τE,σ
xj

] det− 1
2

[
(Π1

0,xj
− dϕ−1

xj
Π0

1,xj
)(IdTxj

X − dϕxj
)
]
. (4.4)

Proof. Recall that Tp admits a smooth Schwartz kernel with respect to dvX for all p ∈ N∗

and t ∈ [0, 1], so that in particular,

TrHp
[ϕ∗

pTp] =
∫
X

TrEp

[
ϕ−1
p .Tp(ϕ(x), x)

]
dvX(x). (4.5)

Let ψ : TX → [0, 1] ×X be a smooth family of vertical charts constant along [0, 1] as in 
Section 2.3, and let ε0 > 0 be such that ψ restricted to BTxX(0, ε0) is a diffeomorphism on 
its image for any x ∈ X. For all x ∈ X and 0 < ε < ε0, we write Ux(ε) := ψ(BTxX(0, ε))
and we identify Z ∈ BTxX(0, ε) with its image in Uxj

(ε0).
Let η ∈ R be the modulus of the smallest eigenvalue of IdTxj

X − dϕxj
∈ End(Txj

X)
for any 1 � j � q. Then by Definition 4.1, we know that |η| > 0. Let us now consider 
ε > 0 small enough so that ϕ(Uxj

(ε)) ⊂ Uxj
(ε0), for all 1 � j � q. Then taking the 

Taylor expansion of ϕ, we get Cj > 0 such that for any p ∈ N∗, θ ∈ [0, 1] and all 
Z ∈ BTxj

X(0, ε) � Uxj
(ε) outside Uxj

(εp− θ
2 ), we have

|Z − ϕ(Z)| � |(IdTxj
X − dϕxj

)Z| − C|Z|2

� (η − Cεp−
θ
2 )εp− θ

2 .
(4.6)

On the other hand, by Theorem 3.16, we know that (2.25) holds for Tp, and we deduce 
from (4.5)-(4.6) that there exists ε > 0 such that for all p ∈ N∗,
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TrHp
[ϕ∗

pTp] =
q∑

j=1

∫
Uxj

(εp− θ
2 )

TrEp

[
ϕ−1
p .Tp(ϕ(x), x)

]
dvX(x) + O(p−∞). (4.7)

Estimating (4.7) term by term, we assume from now on that ϕ has only one fixed point, 
which we denote x0 ∈ X. Consider the trivialization around x0 by parallel transport 
with respect to ∇L, ∇E along radial lines as in Section 2.3, and identify Tx0X with R2n

by (2.32). Any s ∈ C∞(Ux0(ε0), L) induces a smooth function λx0 ∈ C∞(BR2n(0, ε), C), 
defined for all Z ∈ BR2n(0, ε) in these coordinates by the formula

λx0(Z)s(Z) = (ϕL,∗s)(Z) := ϕL,−1
Z .s(ϕ(Z)). (4.8)

In particular, as ϕ(x0) = x0, the unitary endomorphism ϕL,−1
x0

acts on Lx0 by multipli-
cation by λ := λx0(0) ∈ C with |λ| = 1.

Recall that for any v ∈ C∞(X, TX) and s ∈ C∞(X, L), we have by assumption,

∇L
v (ϕL,∗s) = ϕL,∗(∇L

v s). (4.9)

Let Z :=
∑2n

j=1 Zj
∂

∂Zj
∈ C∞(BR2n(0, ε), Tx0X) be the radial vector field of the coordi-

nates above. It is a classical result, which can be found for example in [41, (1.2.31)], that 
in the trivialization of L along radial lines, the connection ∇L at Z ∈ BR2n(0, ε) has the 
form

∇L = d + 1
2R

L(Z, .) + O(|Z|2). (4.10)

Let us take s ∈ C∞(Ux0(ε0), L) in (4.8) to be 1 ∈ C in our trivialization. Then s is 
parallel along radial lines, and the right hand side of (4.9) vanishes for v = Z. Thus 
using (4.8) and (4.10), equation (4.9) becomes

Zj
∂

∂Zj
λx0(Z) = −1

2R
L(Z,Z)λx0(Z) + O(|Z|3)λx0(Z)

= O(|Z|3)λx0(Z).
(4.11)

Solving the ordinary differential equation (4.11), we get a function ζ ∈ C∞(BR2n(0, ε), C)
such that for all Z ∈ BR2n(0, ε),

λx0(Z) = λeζ(Z) with ζ(Z) = O(|Z|3) . (4.12)

Let {Gr,x0(Z, Z ′) ∈ E1,x0 ⊗ E∗
0,x0

}r∈N be the sequence of polynomials in Z, Z ′ ∈ R2n

associated with {Tp}p∈N∗ in (3.91). By (4.7), (4.8) and (4.12), for any δ ∈ ]0, 1[ and 
k ∈ N, we get a θ ∈ ]0, 1[ such that for all p ∈ N∗,
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TrHp
[ϕ∗

pTp] = pnλp
k−1∑
r=0

p−
r
2

∫
BR2n (0,εp− θ

2 )

TrE [ϕE,−1
Z Gr,x0P1,x0P0(

√
pϕ(Z),√pZ)]

epζ(Z)dvX(Z) + O(p− k
2 +δ). (4.13)

Recall (3.11). Considering the Taylor expansion of ϕ up to second order, we get smooth 
functions hα ∈ C∞(BR2n(0, ε), C) for all α ∈ N3 such that for any Z ∈ BR2n(0, ε),

π

2
(
〈Π1

0,x0
(ϕ(Z) − Z), (ϕ(Z) − Z)〉 + 2

√
−1Ω(ϕ(Z), Z)

)
= π

2
(
〈Π1

0,x0
(dϕx0 .Z − Z), (dϕx0 .Z − Z)〉 + 2

√
−1Ω(dϕx0 .Z, Z)

)
+

∑
|α|=3

Zαhα(Z). (4.14)

Using (2.22) and (4.14), we then get for any Z ∈ BR2n(0, ε), k, p ∈ N∗,

P1,x0P0(
√
pϕ(Z),√pZ)

= P1,x0P0(
√
pdϕx0 .Z,

√
pZ) exp

⎛⎝−p
∑
|α|=3

Zαhα(Z)

⎞⎠
= P1,x0P0(

√
pdϕx0 .Z,

√
pZ)( ∏

|α|=3

k−1∑
r=0

(−1)r p
− r

2

r! (√pZ)rαhα(Z)r + p−
k
2 O(|√pZ|k)

)
.

(4.15)

Now for any multi-index α of length 3 and any r ∈ N, we can consider Taylor expansion 
up to order l ∈ N of hr

α as in (3.53) to get aβ ∈ C for all β ∈ N2n such that for any 
Z ∈ BR2n(0, ε), k ∈ N and p ∈ N∗,

P1,x0P0(
√
pϕ(Z),√pZ) = P1,x0P0(

√
pdϕx0 .Z,

√
pZ)⎛⎝1 +

k−1∑
j=1

p−
j
2
∑
|β|=j

(√pZ)βaβ + p−
k
2 O(|√pZ|k)

⎞⎠ . (4.16)

Considering again the Taylor expansion of ϕ, for any polynomial Gr,x0(Z, Z ′) in (4.7), 
we get a sequence {Fr,j(Z) ∈ E1,x0 ⊗E∗

0,x0
}j∈N of polynomials in Z ∈ R2n of the parity 

of r + j and some dk ∈ N, such that

Gr,x0(
√
pϕ−1(Z),√pZ) =

k−1∑
p−

j
2Fr,j(

√
pZ) + p−

k
2 O(|√pZ|dk). (4.17)
j=0
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Furthermore, by (3.84) we get that F0,0(Z) = μ(x0)τE,σ
x0

for any Z ∈ R2n. From (3.11)
and (4.6), we see that the function P1,x0P0(dϕx0 .Z, Z) is integrable over R2n and 
exponentially decreasing in Z ∈ R2n. For any k ∈ N, let Mk ∈ N be the sum of the 
degrees of all polynomials involved in (4.16) and (4.17), and write

δ′ = δ + (Mk + k + 1 + dk)(1 − θ)/2 . (4.18)

Then considering the Taylor expansion of ϕE,−1 in (4.13), applying the reasoning of 
(4.15)-(4.16) to epζ(Z) with ζ(Z) = O(|Z|3) as in (4.12) and using (4.16)-(4.17), we 
deduce the existence of a sequence {Hr,x0(Z) ∈ E1,x0 ⊗ E∗

0,x0
}r∈N of polynomials in 

Z ∈ R2n, of the parity of r, smooth in x0 and with H0,x0(Z) = μ(x0)τE,σ
x0

for any 
Z ∈ R2n, such that via the change of variable Z �→ √

pZ, equation (4.13) becomes

TrHp
[ϕ∗

pTp] = λp
k−1∑
r=0

p−
r
2

∫
R2n

TrE [ϕE,−1
x0

Hr,x0P1,x0P0(
√
pdϕx0 .Z,

√
pZ)]dZ + O(p− k

2 +δ′). (4.19)

Now by (3.11), we see that P1,x0P0(
√
pdϕx0 .Z, 

√
pZ) is even in Z ∈ R2n, and as the 

polynomial H2r+1 is odd for any r ∈ N, we get

∫
R2n

TrE [ϕE,−1
x0

H2r+1,tP1,x0P0(
√
pdϕx0 .Z,

√
pZ)]dZ = 0. (4.20)

Thus from (4.19) and (4.20), we get br ∈ C for all r ∈ N such that

TrHp
[ϕ∗

pTp] =
k−1∑
r=0

p−rλpbr + O(p− k
2 +δ). (4.21)

Using (4.7) and (4.21), we can extend the above reasoning to the case of m fixed point 
to get (4.3) in general.

Let us now compute

b0,x0 =
∫

R2n

TrE [ϕE,−1
x0

τE,σ
x0

]μ(x0)P1,x0P0(dϕx0 .Z, Z)dZ. (4.22)

Using (3.7)-(3.10), we know that Π1
0 + Π0

1 = IdR2n and that Ω(Π1
0·, ·) = Ω(·, Π0

1·). From 
(3.9), (3.11), using Ω(·, ·) = Ω(dϕx0 ·, dϕx0 ·) and the identities above, for any Z, Z ′ ∈ R2n

we get
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det(A0
1)−

1
2 P1,x0P0(dϕx0 .Z, Z)

= exp
[
−π

(〈
Π1

0,x0
(dϕx0 .Z − Z), (dϕx0 .Z − Z)

〉
+
√
−1Ω(dϕx0 .Z, Z)

)]
= exp

[√
−1π

(
Ω((Π1

0,x0
dϕx0 − Π1

0,x0
).Z, dϕx0 .Z − Z) + Ω(Z, dϕx0 .Z − Z)

)]
= exp

[√
−1π

(
Ω(Z, (dϕ−1

x0
Π0

1,x0
+ Π1

0,x0
)(dϕx0 .Z − Z))

)]
= exp

[
−π

〈
(Π1

0,x0
− dϕ−1

x0
Π0

1,x0
)(IdR2n − dϕx0).Z, Z

〉]
.

(4.23)

For the last line, we used the fact that J0dϕ
−1
x0

= dϕ−1
x0

J1 by definition. Using (3.24) as 
in the proof of (3.21), the formula (4.22) then becomes

b0,x0 = μ̄−1(x0) TrE [ϕE,−1
x0

τE,σ
x0

]∫
R2n

exp
[
−π

〈
(Π1

0,x0
− dϕ−1

x0
Π0

1,x0
)(IdR2n − dϕx0)Z,Z

〉]
dZ. (4.24)

Using once again the identities mentioned above, we see that the endomorphism in-
side the exponential of (4.24) is symmetric, and its real part is obviously positive as 
P1,x0P0(dϕ.Z, Z) decreases exponentially in Z ∈ R2n. We can thus apply the classical 
formula for the Gaussian integral to get (4.4) from (4.24). �
4.2. Higher dimensional fixed points

In this section, we extend the asymptotic expansion of Theorem 4.2 to the case when 
the fixed point set Xϕ ⊂ X of ϕ is a submanifold of arbitrary dimension satisfying the 
non-degeneracy condition of Definition 4.1.

Let N be a subbundle of TX over Xϕ such that TX|Xϕ = N ⊕ TXϕ, and equip N
with the Euclidean metric gN = gTX

0 |N . Let |dv|N be the density of (N, gN ). We define 
a density |dv|TX/N over Xϕ by the formula

|dv|TX = |dv|N |dv|TX/N . (4.25)

Note that if N is the normal bundle of Xϕ in X, then |dv|TX/N is simply the Riemannian 
density of (Xϕ, gTX

0 |Xϕ). We write PN : TX|Xϕ → N for the orthogonal projection with 
respect to gTX

0 .

Theorem 4.3. Suppose that the fixed point set Xϕ of ϕ : X → X is non-degenerate, 
and write Xϕ =

∐q
j=1 X

ϕ
j , q ∈ N, for its decomposition into connected components. Set 

dj = dimXϕ
j , and for any 1 � j � m, let λj ∈ C be the constant value of ϕL,−1 restricted 

to Xϕ
j . Then there are densities νr over Xϕ for any r ∈ N such that for any k ∈ N and 

as p → +∞,
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TrHp
[ϕ∗

pTp] =
q∑

j=1
pdj/2λp

j

⎛⎜⎝k−1∑
r=0

p−r

∫
Xϕ

j

νr(x) + O(p−k)

⎞⎟⎠ . (4.26)

Furthermore, the following equality holds,

ν0 = μ̄−1 TrE [ϕE,−1τE,σ] det− 1
2

N

[
PN (Π1

0 − dϕ−1Π0
1)(IdTX − dϕ)PN

]
|dv|TX/N . (4.27)

Proof. For any 1 � j � q, take a tubular neighbourhood Uj of Xϕ
j . Then by (2.25) and 

(3.91), we know that

TrHp
[ϕ∗

pTp] =
q∑

j=1

∫
Uj

TrEp

[
ϕ−1
p .Tp(ϕ(x), x)

]
dvX(x) + O(p−∞). (4.28)

Then as in the proof of Theorem 4.2, we can assume without loss of generality that Xϕ

has only one connected component, and set d = dimXϕ. Furthermore, as all the com-
putations are local on Xϕ, we can assume Xϕ oriented. Write dvXϕ for the Riemannian 
volume form of (Xϕ, gTX

0 |Xϕ).
Let | · |N be the norm on the subbundle N ⊂ TX|Xϕ transverse to TXϕ over Xϕ

induced by gN = gTX
0 |N as above. Let ψ be a smooth family of vertical charts constant 

along [0, 1] as in Section 2.3, and let ε0 > 0 be such that ψ restricted to the ball 
bundle BN (0, ε0) := {w ∈ N | |w|N < ε0} is a diffeomorphism on its image. Then 
U(ε0) := ψ

(
BN (0, ε0)

)
is a tubular neighbourhood of Xϕ in X.

Let dw be a Euclidean volume form on the fibres of (N, gTN) such that the volume 
form dwdvXϕ on the total space of N is compatible with the orientation of Xϕ. Let 
dvTX/N be the volume form over Xϕ such that for any y ∈ Xϕ and w ∈ Uy(ε0),

dvX(y, w) = h(y, w) dwdvXϕ(y), (4.29)

for some function h ∈ C∞(U(ε0), R) satisfying h(y, 0) = 1 for all y ∈ Xϕ. Following the 
proof of Theorem 4.2, by Definition 4.1 and compactness of Xϕ, we know that

inf
w∈N, |w|N=1

|(dϕ− IdTX)w|gTX
0

> 0. (4.30)

Let us consider ε > 0 small enough so that ϕ(U(ε)) ⊂ U(ε0). As in (4.6), we get 
ε′ > 0 such that for all p ∈ N∗ and x ∈ X\U(εp− θ

2 ), we have ϕ(x) ∈ X\U(ε′p− θ
2 ). By 

Theorem 3.16 and (2.25) as in (4.7), for any p ∈ N∗ we get

TrHp
[ϕ∗

pTp] =
∫
− θ

TrEp

[
ϕ−1
p .Tp(ϕ(x), x)

]
dvX(x) + O(p−∞)
U(εp 2 )
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=
∫

y∈Xϕ

∫
BNy (0,εp− θ

2 )

TrEp

[
ϕ−1
p .Tp(ϕ(y, w), (y, w))

]
h(y, w)dwdvTX/N (y) + O(p−∞). (4.31)

As Xϕ is connected and by (4.9), the unitary endomorphism ϕL,−1
y ∈ End(Ly) � C

identifies with a constant complex number λ ∈ C such that |λ| = 1. Fixing x0 ∈ Xϕ, we 
will estimate the middle integral of the right hand side of (4.31) for y = x0 in the coor-
dinates and trivialization of Section 2.3. From (3.91), (4.29) and following (4.8)-(4.13), 
we get a function ζ ∈ C∞(BTx0X(0, ε), C) such that for any δ ∈ ]0, 1[ and k ∈ N, there 
is θ ∈ ]0, 1[ such that for all p ∈ N∗,

∫
BNx0 (0,εp− θ

2 )

TrE [ϕ−1
p,wTp(ϕ(w), w)]h(x0, w)dw =

pn
k−1∑
r=0

p−
r
2λp

∫
BNx0 (0,εp− θ

2 )

TrE [ϕE,−1
w Gr,x0P1,x0P0(

√
pϕ(w),√pw)]

epζ(w)dw + O(p− k
2 +δ). (4.32)

By the argument of the proof of Theorem 4.2, we deduce from (4.32) the existence of a 
sequence {Hr,x0(Z, Z ′) ∈ E0,x0 ⊗ E∗

1,x0
}r∈N of polynomials in Z, Z ′ ∈ R2n of the same 

parity as r, depending smoothly in x0 ∈ X and with H0,x0(Z, Z ′) = μ(x0)τE,σ
x0

, such 
that for any δ ∈ ]0, 1[ and k ∈ N, there is a θ ∈ ]0, 1[ such that for all p ∈ N∗,

∫
BNx0 (0,εp− θ

2 )

TrE [ϕ−1
p,wTp(ϕ(w), w)]h(x0, w)dw

= p
d
2

k−1∑
r=0

p−
r
2λp

∫
Nx0

TrE
[
ϕE,−1
x0

Hr,x0P1,x0P0(dϕx0 .w, w)
]
dw + p

d
2O(p− k

2 +δ). (4.33)

Recall that Ker(dϕx0 − IdTx0X
) ∩ Nx0 = {0} by assumption, so that the integrand of 

(4.33) decreases exponentially in w ∈ Nx0 by (3.11). Then repeating the arguments of 
(4.19)-(4.21) and by integrating with respect to x0 ∈ Xϕ, we produce from (4.31) and 
(4.33) a sequence {νr}r∈N of densities over Xϕ, such that under the assumption of a 
unique connected component of Xϕ, we have

TrHp
[ϕ∗

pTp] = λpp
d
2

k−1∑
r=0

p−r

∫
Xϕ

νr + p
d
2O(p− k

2 +δ), (4.34)

and for any y ∈ X,
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ν0(y) = TrE [ϕE,−1
y τE,σ

y ]μ(y)

⎛⎜⎝∫
Ny

P1,yP0(dϕy.w, w)dw

⎞⎟⎠ |dv|TX/N (y). (4.35)

Then the computation of (4.27) from (4.35) is analogous to (4.23). The case of multiple 
components follows by (4.28) and linearity. �
5. Applications

In Section 5.1, we interpret the formulas found in Theorems 4.2 and 4.3, and show that 
they are compatible with the local equivariant index formula in the holomorphic case. 
In Section 5.2, we introduce the notion of a Hitchin connection, and relate it with the 
notion of Toeplitz connection introduced in Definition 3.15. In Section 5.3, we present an 
application to Witten’s asymptotic expansion conjecture for the quantum representations 
of the mapping class group.

5.1. Geometric interpretation

Recall from Section 2.1 that the relative canonical line bundle KX := det(T (1,0)∗X)
of a prequantized fibration is endowed with the connection ∇KX induced by the vertical 
Levi-Civita connection ∇TX defined by (2.3). In this section, we will make use of the 
isomorphism

T (0,1)X −→ T (1,0)∗X

w �−→ gTX(w, ·)
(5.1)

of complex vector bundles over X × [0, 1] induced by the relative Riemannian metric 
gTX seen as a C-bilinear form over TXC. Via this isomorphism, the line bundle with 
connection (KX , ∇KX ) identifies with the line bundle det(T (0,1)X) endowed with the 
connection ∇det(T (0,1)X) induced by ∇TX . The following lemma gives a geometric inter-
pretation of the function μt ∈ C∞(X, C) defined by formula (3.18) in the local model, 
and allows to deduce Theorem 1.1 from Theorem 3.16.

Lemma 5.1. For any t ∈ [0, 1], we have following formula for the function μt ∈ C∞(X, C)
appearing Theorem 3.16,

μ̄2
t = det(Π0

t )−1τKX
t , (5.2)

where τKX
t : KX,0 → KX,t is the parallel transport in KX over horizontal lines of 

[0, 1] × X with respect to ∇KX and det(Π0
t ) : KX,0 → KX,t is the bundle isomorphism 

induced by Π0
t via the isomorphism (5.1).
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Proof. Consider the setting of Section 2.3. Using Koszul formula and the definition (2.3)
of ∇TX , we know that

∇TX
∂H
t

= ∂

∂t
+ 1

2Jt
(

∂

∂t
Jt

)
(5.3)

in the tautological fibration π : [0, 1] ×X → [0, 1]. Thus by (2.5), for all t ∈ [0, 1] we have

∇T (0,1)X
∂H
t

= P
(0,1)
t

∂

∂t
P

(0,1)
t . (5.4)

Recall the notations of Section 3.1, and for any t ∈ [0, 1], let Π0
t ∈ End(TXC) be 

the projection on T (0,1)Xt with kernel T (1,0)X0, which restricts to a natural bundle 
isomorphism between T (0,1)X0 and T (0,1)Xt. Using (3.7)-(3.9), for any w ∈ T (0,1)X0, we 
compute

P
(0,1)
t

∂

∂t
P

(0,1)
t Π0

t .w = P
(0,1)
t

(
∂

∂t
A0

t

)
P

(0,1)
0 .w

=
(
−1

2Π0
t

∂

∂t
(−J0Jt)

)
Π0

t .w.

(5.5)

By the definition (3.18) of μt and via the isomorphism (5.1) induced by the relative 
Riemannian metric gTX , this shows (5.2). �

Recall (3.82) and (4.25), and consider the context of Section 4. The following Lemma 
gives a geometric interpretation for the localization formula (4.27), and allows to deduce 
Theorem 1.2 from Theorem 4.3.

Lemma 5.2. Suppose that the tangent bundle TX over the fixed point set Xϕ admits 
a decomposition TX = TXϕ ⊕ N preserved by dϕ and J0. Then over any connected 
component of Xϕ of dimension 2d, the first coefficient (4.27) in Theorem 4.3 satisfies

ν0 = (−1)
n−d

2 TrE [ϕE,−1τE,σ](ϕKX τKX ,−1)1/2|detN (IdTN − dϕ|N )|− 1
2 |dv|TX/N , (5.6)

for some natural choice of square roots depending on ϕ and the choice of the path.

Proof. Let ϕ : X → X be a diffeomorphism lifting to (L, hL, ∇L), sending J0 to J1
as in (4.1). Let x ∈ X be a fixed point of ϕ. Using that Π1

0,x, Π0
1,x

∈ End(TxXC) are 

the projection operators on T (1,0)
x X0, T (0,1)

x X1 with kernel T (0,1)
x X1, T

(1,0)
x X0, and that 

dϕ. T (1,0)
x X0 = T

(1,0)
x X1, we know that

(Π1
0,x − dϕ−1

x Π0
1,x

). v = v for any v ∈ T (1,0)
x X0,

(Π1 − dϕ−1Π0 ) dϕ .v = −v for any v ∈ T (0,1)X .
(5.7)
0,x x 1,x x x 0
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In particular, as T (1,0)X0 and dϕ. T (1,0)
x X0 = T

(1,0)
x X1 are transverse by (3.10), we get 

that (Π1
0,x − dϕ−1

x Π0
1,x

) is invertible, and if {wj}nj=1 is a basis of T (1,0)
x X0,

det(Π1
0,x − dϕ−1

x Π0
1,x

)−1 = w1 ∧ · · · ∧ wn ∧ (−dϕx).w1 ∧ · · · ∧ (−dϕx).wn

w1 ∧ · · · ∧ wn ∧ w1 ∧ · · · ∧ wn

= (−1)n dϕx.w1 ∧ · · · ∧ dϕx.wn

Π0
1,x

w1 ∧ · · · ∧ Π0
1,x

wn

= (−1)nϕKX
x det(Π0

1)−1
x ,

(5.8)

with det(Π0
t ) : KX,0 → KX,t as in Lemma 5.1 and ϕKX : KX,0 → KX,1 the natural 

bundle map induced by ϕ via the isomorphism (5.1), which commutes with the natural 
action of ϕ as gTX

1 (·, ·) = gTX
0 (dϕ·, dϕ·) by definition. Then in the notations of Section 4, 

by (5.2) and (5.8) we get

μ̄−2(x) det (Π1
0,x − dϕ−1

x Π0
1,x

) = (−1)nϕKX
x μ̄−2(x) det(Π0

1)−1
x

= (−1)nϕKX
x (τKX

x )−1.
(5.9)

Assume now that dϕ and J0 preserve a decomposition TX = TXϕ ⊕N over Xϕ. Then 
by (5.7), we see that (Π1

0−dϕ−1Π0
1) over Xϕ preserves N as well, and that its restriction 

to N is invertible. Then by computations analogous to (5.8) and by (5.9), over any 
connected component of Xϕ of dimension 2d, we get

μ̄−2 detN

[
PN (Π1

0−dϕ−1Π0
1)(IdTX − dϕ)PN

]−1

= μ̄−2 detN

[
(Π1

0 − dϕ−1Π0
1)|N

]−1
detN (IdN − dϕ|N )−1

= (−1)n−dϕKX (τKX )−1 detN (IdN − dϕ|N )−1.

(5.10)

This together with (4.27) shows (5.6). �
We see that formula (4.27) acquires a natural interpretation in terms of parallel trans-

port in a square root of KX , which always exists locally. In particular, if c1(TX) is even, 
so that we can take E =: K1/2

X whose square is equal to KX with induced metric and 
connection, and if there is a lift of ϕ to K1/2

X squaring to ϕKX on KX , then (5.6) sim-
plifies and we recover [27, Th.5.3.1] as a special case, when (X, J, ω) Kähler and Xϕ

discrete. Consider now the context of Section 3.

Lemma 5.3. Let π : B×X → B be a tautological fibration with relative complex structure 
J ∈ End(TX) and auxiliary vector bundle (E, hE , ∇E), and let γ : [0, 1] → B be such 
that γ(0) = γ(1) = b0 ∈ B. Let Tp ∈ End(Hp,b0) be the parallel transport in Hp along γ
with respect to a Toeplitz connection, for all p ∈ N∗ big enough. Then there exists C > 0
such that as p → +∞,
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‖Tp − Pp (τKX )− 1
2 τE,σPp‖p,b0 < Cp−1, (5.11)

for an appropriate square root of the parallel transport τKX ∈ End(KX) � C∞(X, C) in 
KX along γ.

Proof. Restricting the fibration over γ as in Section 2.3, we see that the diffeomorphism 
τ1 : X0 → X1 defined in (2.29) is the identity of X � X1 = X0, so that J1 = J0, 
Pp,1 = Pp,0 and det(Π0

1) = 1. Then (5.11) is a consequence of Theorem 3.16, comparing 
(3.84) with (5.2). �

In the case γ is contractible in B, if the fibration is holomorphic as in Proposition 2.3
and for the L2-connection, this result is a consequence of the computations in [44, Th.2.1]
of the curvature of ∇Hp . Note that [44, Th.2.1] applies for general Kähler fibrations, 
which need not be tautological, and the same is true for Theorem 3.16. Taking ϕ : X → X

to be the diffeomorphism identifying X1 with X0 via (2.29) on a loop γ : [0, 1] → B, we 
recover in general the first coefficient of [44, (8)] as the contribution of ϕp : Lp → Lp

through the description of the curvature as the derivative of the parallel transport.

5.2. Hitchin connections

In this section, we describe an important class of Toeplitz connections called Hitchin 
connections, which appear naturally in the context of geometric quantization of moduli 
spaces. These are the connections used in the application of Theorem 4.3 to Witten’s 
asymptotic expansion conjecture, which we describe in Section 5.3.

Consider a holomorphic prequantized fibration π : M → B, and fix p0 ∈ N as in 
Theorem 2.2 for U = B. Recall that J ∈ End(TX) over M denotes the associated 
relative compatible complex structure. For any v ∈ C∞(B, TB), let τvt be the flow on 
M generated by its horizontal lift vH ∈ C∞(M, TM) with respect to (2.2) at time 
t ∈ R. Then τvt preserves the fibres, so that its differential restricts to a bundle map 
dτvt : TX → TX. Define the Lie derivative of J by the formula

LvJ = ∂

∂t

∣∣∣
t=0

dτvt . J. (dτvt )−1 ∈ End(TX). (5.12)

Then LvJ ∈ End(TX) exchanges T (1,0)X and T (0,1)X inside TX as in (2.4). For any 
w ∈ TXC, recall that ιw ∈ End(Λ(T ∗XC)) denotes the contraction by w. For any 
w1, w2 ∈ TXC, we define

iw1⊗w2 : Λ(T ∗XC) → TXC ⊗ Λ(T ∗XC)

α �→ w1 ⊗ ιw2α,
(5.13)

and we extend this definition to all of TXC⊗TXC by linearity. Then for A ∈ TXC⊗TXC, 
we can consider iAω ∈ TXC ⊗ T ∗XC as an element of End(TXC). Following [2, §1], we 
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define a section G ∈ C∞(M, π∗T ∗B ⊗ T (1,0)X ⊗ T (1,0)X) by the following formula, for 
all v ∈ TB and w ∈ T (0,1)X,

LvJ.w = 2π(iG(v)ω).w. (5.14)

We still write ∇T (1,0)X for the connection on T (1,0)X ⊗ T (1,0)X induced by (2.5). The 
following definition can be found in [2, Def.1].

Definition 5.4. An holomorphic prequantized fibration is rigid if for all v ∈ C∞(B, TB), 
we have

∇T (1,0)XG(v) = 0. (5.15)

For any vector bundle with connection (E, ∇E) over M and any A ∈ T (1,0)M⊗2, let 
ΔE

A be the second order differential operator in the fibres of π : M → B, defined for any 
w1, w2 ∈ T (1,0)X by the formula

ΔE
w1⊗w2

s = Tr[∇T (1,0)X⊗E(w1 ⊗∇E
w2

s)]. (5.16)

Recall (2.2), and suppose that there exists k ∈ N∗ and a function ρ ∈ C∞(M, R) such 
that

k ωX =
√
−1
2π

[
TrRT (1,0)X + ∂∂ρ

]X
. (5.17)

Using the notations of Section 2.1, we are now ready to state the following theorem, 
which is originally due to [33, §3] and [12, §4.b]. In this generality, it is due to [2, Th.1].

Theorem 5.5. Let π : M = B ×X → B be a rigid holomorphic tautological prequantized 
fibration with E = C. Suppose that X is simply connected and that (5.17) holds for some 
ρ ∈ C∞(X, R). For any p ∈ N∗ and v ∈ C∞(B, TB), let ∇p

v be the differential operator 
acting on C∞(M, Lp) by

∇p
v = ∇Lp

vH + 1
4p + 2k

(
ΔLp

G(v) −∇Lp

iG(v)dρ
+ 2p ∂ρ.vH

)
. (5.18)

Then ∇p
v preserves holomorphicity in the fibres for any v ∈ C∞(B, TB) and p ∈ N∗, 

and thus induces by restriction a family of connections {∇p}p∈N∗ on the quantum bundle 
{Hp}p∈N∗ over B.

In particular, using parallel transport with respect to (5.18), this shows that the 
dimension of the space of holomorphic sections is constant, so that the quantum bundle 
is well defined for any p ∈ N∗. Recall Definition 3.15.
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Lemma 5.6. Under the hypotheses of Theorem 5.5, the family of connections {∇p}p∈N∗

defined by (5.18) is a Toeplitz connection. Furthermore, its first coefficient in (3.78)
satisfies

σ0 = 1
2∂ρ. (5.19)

Proof. By Theorem 5.5, the first-order differential operator ∇p
v defined in (5.18) for any 

v ∈ C∞(B, TB) and p ∈ N∗ preserves the fibrewise holomorphic sections, so that (5.18)
rewrites

∇p
v = Pp

[
∇Lp

vH + 1
4p + 2k

(
ΔLp

G(v) −∇Lp

iG(v)dρ
+ 2p ∂ρ.vH

)]
Pp

= ∇Hp
v + 1

4p + 2kPp

(
ΔLp

G(v) −∇Lp

iG(v)dρ
+ 2p ∂ρ.vH

)
Pp

(5.20)

Now by straightforward computations in the spirit of [49, Th.2.1], there exist functions 
g, h ∈ C∞(M, C) such that

PpΔLp

G(v)Pp = PpgPp,

Pp∇Lp

iG(v)dρ
Pp = PphPp.

(5.21)

We can then take the expansion in p ∈ N∗ of the multiplicative constant in front of the 
second term of (5.20) to get the result by (3.78). �

Let us now describe a variant of Theorem 5.5 including a square root of KX , which 
is originally due to [46, §3], and which in this generality is due to [4, Th.1.2].

Theorem 5.7. Under the assumptions of Theorem 5.5, with c1(TX) even and taking 
E = K

1/2
X , there exists a 1-form β ∈ C∞(M, T ∗MC) such that for any p ∈ N∗ and 

v ∈ C∞(B, TB), the differential operator ∇p
v acting on C∞(M, Lp ⊗K

1/2
X ) defined by

∇p
v = ∇Ep

vH + 1
4p

(
ΔEp

G(v) + β(vH)
)
, (5.22)

preserves holomorphicity in the fibres, for any v ∈ C∞(B, TB) and p ∈ N∗, and thus in-
duces by restriction a family of connections {∇p}p∈N∗ on the quantum bundle {Hp}p∈N∗

over B.

We then have the following analogue of Lemma 5.6, whose proof is strictly analogous.

Lemma 5.8. Under the hypotheses of Theorem 5.7, the family of connections {∇p}p∈N∗

defined by (5.22) is a Toeplitz connection. Furthermore, its first coefficient in (3.78)
satisfies σ0 = 0.
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Consider now a diffeomorphism ϕ : X → X lifting to a bundle map ϕ : L → L

preserving metric and connection, and assume that the induced action of ϕ on the space of 
compatible complex structures preserves B. Then by Lemma 5.6, if ϕ has non-degenerate 
fixed point set, we can apply Theorem 4.3 to the situation of Theorem 5.5. We recover 
in this way the result of [6, Th.1.2], and moreover, we give an explicit formula for the 
first coefficient. On the other hand, by Lemma 5.8 we can apply Theorem 4.3 to the 
situation of Theorem 5.7, under the additional hypothesis that there exists a lift of ϕ to 
K

1/2
X squaring to ϕKX . In the case dimXϕ = 0, this is the result of [28, Th.6.3, Th.6.4], 

with the corresponding formula (5.6) for the first coefficient.

5.3. Witten’s aymptotic conjecture

In this section, we explain how the results of Section 4 apply to Witten’s asymptotic 
expansion conjecture for quantum representation of the mapping class group described 
in the introduction.

Let Σ be an oriented compact surface of genus g � 2, and let P be the trivial
SU(m)-principal bundle over Σ, with m � 2. Let D be a disk inside Σ, and choose 
d ∈ (Z/mZ)∗. We consider the space A of flat connections on P over Σ\D with holon-
omy along its boundary equal to e

2π
√

−1d
m IdCm ∈ SU(m). The gauge group Aut(P ) of 

automorphisms of P acts naturally on A , and it is a basic fact that all A ∈ A are 
irreducible, meaning that the stabiliser of A in Aut(P ) is the centre of Aut(P ), which 
identifies with the centre of SU(m).

Let A ′ ⊂ A be the connections with some fixed standard form in a neighbourhood 
of the boundary of Σ\D, and note that any [A] ∈ A / Aut(P ) has a representative in 
A ′. If t �→ At ∈ A ′ is smooth in t ∈ R, we can extend d

dt

∣∣
t=0At by 0 over D and 

consider it as an element of Ω1(Σ, su(m)). Any A ∈ A ′ induces a flat connection on the 
trivial adjoint bundle adP over Σ\D with trivial holonomy along the boundary, so that 
it extends to a covariant derivative dA on Ω•(Σ, su(m)) satisfying d2

A = 0. Let H•
A(Σ)

denote its cohomology. The following result is classical and is essentially due to [10, p. 
587, Th.9.12, §14] and [31, §1.2, §1.8].

Proposition 5.9. The quotient M = A / Aut(P ) is simply connected and has a natural 
structure of a smooth compact manifold. For any A ∈ A ′, there is a natural isomorphism

T[A]M � H1
A(Σ), (5.23)

sending the tangent vector at t = 0 of a smooth curve t �→ At ∈ A ′ with A0 = A to the 
cohomology class of d

dt

∣∣
t=0At ∈ Ω1(Σ, su(m)). Furthermore, for any α, β ∈ Ω1(Σ, su(m))

with dAα = dAβ = 0, the formula

ωM ([α], [β]) = − m

4π2

∫
Tr(α ∧ β) (5.24)
Σ
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defines a symplectic form ωM on M via (5.23).

Note that the symplectic form (5.24) is m times the canonical symplectic form of M , 
as defined in [10, p.587].

Let f ∈ Diff+(Σ, D) be an orientation preserving diffeomorphism of Σ fixing D point-
wise, inducing a diffeomorphism

ϕ : M −→ M

[A] �−→ [f∗A]
(5.25)

preserving (5.24). The following result is classical and can be deduced from [21, §4.2]
and [45, §3.3, §4.3].

Proposition 5.10. There is a natural Hermitian line bundle with connection (L, hL, ∇L)
over (M , ωM ) whose curvature satisfies the prequantization condition (1.1), and a nat-
ural lift ϕL of (5.25) to L preserving metric and connection.

Note that this line bundle is the m-th power of the Chern-Simons bundle of [45, §3.3], 
which is only an orbifold line bundle in general. The lift ϕL is the one acting trivially on 
the second summand of A ×C in the description of this line bundle as a quotient given 
at the end of [45, §3.3].

Recall that the group Diff0(Σ) of diffeomorphisms isotopic to the identity acts natu-
rally on the space JΣ of complex structures on Σ. As explained for example in [7, §3-4], 
the Teichmüller space TΣ := JΣ/ Diff0(Σ) has a natural structure of a complex mani-
fold. Following [33, §2], we identify complex structures on Σ with Hodge-star operators 
on Ω1(Σ), and write ∗ ∈ JΣ. Recall that α ∈ Ω1(Σ, su(m)) satisfying dAα = ∗dAα = 0
is called harmonic. Recalling Definition 5.4, the following result follows from [33, (2.6), 
(2.15)] and [12, §2].

Proposition 5.11. The first projection π : TΣ × M → TΣ has a structure of a rigid 
holomorphic tautological fibration, with associated line bundle (L, hL, ∇L) as above. For 
any ∗ ∈ JΣ and A ∈ A ′, the associated relative complex structure J ∈ End(TM ) is 
defined over ([∗], [A]) ∈ TΣ × M via (5.23) and Hodge theory by

Jα = − ∗ α, (5.26)

where α ∈ Ω1(Σ, su(m)) is the unique harmonic representative of [α] ∈ H1
A(Σ).

The associated relative Riemannian metric on the relative tangent bundle TM over 
([∗], [A]) ∈ TΣ × M is then given via (5.23) and Hodge theory by

gTM ([α], [β]) = m

4π2

∫
〈α, β〉T∗Σ dvΣ, (5.27)
Σ
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where α, β ∈ Ω1(Σ, su(m)) are the unique harmonic representative of [α], [β] ∈ H1
A(Σ), 

for 〈·, ·〉T∗Σ and dvΣ induced by any Riemannian metric gTΣ associated with ∗ ∈ JΣ, 
which we take to be the associated hyperbolic metric.

For any A ∈ A ′ and ∗ ∈ JΣ, let dA =: ∂A + ∂A be the decomposition of dA with 
respect to the splitting (2.4) of (TΣ, ∗). Consider the universal family of Riemann surfaces 
over TΣ as in [7, Th.5.6], and give it the structure of a holomorphic prequantized fibration 
as in [38, §5.1]. By the construction of [18, Th.1.9], we can consider the holomorphic 
determinant line bundle det(∂A) of the induced family of ∂-operators over M ×TΣ. The 
following theorem is a consequence of the curvature formula of [18, Th.1.9]. It follows 
from [33, §2] and the computations of [12, (4.17)].

Proposition 5.12. The canonical bundle KM over M × TΣ is isomorphic to the dual of 
the determinant line bundle det(∂A) considered above. Furthermore, the Chern curvature 
of its natural Hermitian metric hKM induced by (5.27) satisfies

√
−1
2π

[
−RKM + ∂∂ρ

]M = 2ωM , (5.28)

where ρ ∈ C∞(M ×TΣ, R) is the analytic torsion of the associated family of ∂-operators 
induced by the hyperbolic metric associated with ∗ ∈ TΣ.

The metric hQ := e−ρhKM on KM is called the Quillen metric, and the Chern con-
nection ∇Q of (KM , hQ) satisfies

∇Q = ∇KM − ∂ρ. (5.29)

For ∗ ∈ JΣ and f ∈ Diff+(Σ, D) as above, let γ : [0, 1] → TΣ be a path joining [∗] to 
[f∗∗], and consider the pullback of the universal family of Riemann surfaces over TΣ by 
γ. This induces a holomorphic prequantized fibration

πf : Σf � Σ × [0, 1]/[(0, x) ∼ (1, f(x))] −→ R/Z, (5.30)

and we call Σf the mapping torus of f . We write (Σ\D)f ⊂ Σf for the mapping torus 
of f |Σ\D.

By Propositions 5.9 to 5.12, we can apply Theorem 5.5 with k = 2 and consider the 
parallel transport with respect to the connection {∇p}p∈N∗ of (5.18) in the quantum 
bundle {Hp}p∈N∗ associated with π : TΣ × M → TΣ along γ : [0, 1] → TΣ. This is 
precisely the canonical projectively flat connection of [12, §4.b] on the Verlinde bundle. 
By Lemma 5.6, we are then precisely in the context of Section 4, with (X, ω) = (M , ωM )
and ϕ : M → M defined in (5.25).

Proof of Theorem 1.3 and Theorem 1.4. Let Af be the space of flat SU(m)-connections 
over (Σ\D)f with holonomy around the boundary equal to e

2π
√

−1d
m IdCm ∈ SU(m), and 
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let Mf be the associated moduli space defined as above. As all A ∈ A are irreducible, 
the same is true for all Af ∈ Af . By assumption, the analogue of Proposition 5.9 applies 
to Mf , so that it is smooth and its tangent space at any [Af ] ∈ Mf identifies with 
the first cohomology group H1

Af
(Σf ) of (Ω•

Af
(Σf ), dAf

) defined as above. Following [36, 
§5.2.1] and [28, §8.1], consider the map r : Mf → M defined by restriction over any 
fibre of (5.30), which satisfies Im r = M ϕ and # r−1([A]) = m, where M ϕ denotes the 
fixed point set of ϕ : M → M defined in (5.25).

For any Af ∈ Af , let A ∈ A be the restriction of Af to any fibre of (5.30), so that 
r([Af ]) = [A]. Recall as in [33, p. 359] that the irreducibility of A ∈ A implies that 
H0

A(Σ) = H2
A(Σ) = {0}. Let dt be the canonical volume form of R/Z. Following [3, 

(4.2)], we have the following long exact sequence in cohomology

0 −→ H1
Aϕ

(Σϕ) r∗−−−−→ H1
A(Σ) Id−f∗

−−−−−→ H1
A(Σ)

•∧π∗
fdt−−−−−→ H2

Aϕ
(Σϕ) −→ 0, (5.31)

where the first map is induced by restriction on any fibre of (5.30), and thus identifies 
with the differential of r : Mf → M via (5.23). This shows that r : Mf → M is a 
smooth immersion, and thus a smooth m-covering on its image Im r = M ϕ, which is 
smooth as well. Furthermore, the exactness of (5.31) together with (5.23) and (5.25)
implies that TM ϕ = Ker(IdTM − dϕ). Thus the fixed point set of ϕ is non-degenerate, 
and we can apply Theorem 4.3 to this situation. The asymptotic expansion (1.10) is 
then an immediate consequence of Theorem 4.3, where the locally constant value of ϕL

restricted to M ϕ has been computed in [28, Prop.8.4] to be equal to (1.9). The densities 
over Mf are obtained by pullback by r : Mf → M ϕ.

Let us now show (1.11). Restrict the prequantized fibration π : TΣ × M → TΣ over 
the path γ : [0, 1] → TΣ as in Section 2.3, and let [A] ∈ M be fixed by ϕ. Then under 
the assumptions of Lemma 5.2, with E = C and τE,σ determined by Lemma 5.6, we get 
over any connected component of M ϕ of dimension 2d and for some coherent choices of 
square roots,

ν0 = (−1)
n−d

2 (ϕKM τQ,−1) 1
2 |detN (IdN − dϕ|N )|− 1

2 |dv|TM/N , (5.32)

where τQ is the parallel transport on KM with respect to (5.29) and |dv|TM/N is 
the density over M ϕ satisfying (4.25). Following [5, Cor.4.3], the Reidemeister torsion
τΣϕ

(adAϕ) of adAϕ over Σϕ is equal to the torsion of the complex (5.31), which is iden-
tified with an element of detH1

Aϕ
(Σϕ)−2 via Poincaré duality. Thus the absolute value 

|τΣϕ
(adAϕ)| 12 can be identified with a density over M ϕ. Following [5, Th.5.6] and using 

the fact that Id−dϕ preserves a transverse subbundle N of TM ϕ as in [5, Prop.5.4], we 
deduce from (4.25) and (5.31) that

|τΣϕ
| 12 = |detN (IdN − dϕ|N )|− 1

2 |dv|TM/N . (5.33)

Now let dA + d∗A be the even signature operator on Ω•
A(Σ, su(m)), where d∗A is the dual 

of dA with respect to (5.27). By a construction of [16], we can consider the associated 
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determinant line bundle over TΣ × M , equipped with the Bismut-Freed connection of 
[16, Def.1.17]. We then have the following lemma, which follows from an argument of [8, 
§4, (4.12)] using Proposition 5.12 and [18].

Lemma 5.13. The square K2
M of the relative canonical line bundle of the complex fibration 

π : TΣ × M → TΣ is isomorphic to the determinant line bundle of the even signature 
operator over TΣ ×M . Furthermore, this isomorphism sends the connection induced by 
∇Q on K2

M to the Bismut-Freed connection.

Then as explained in [8, §4], the holonomy theorem of [15, Th.3.16] implies that the 
parallel transport with respect to the Bismut-Freed connection over the loop (γ, [A])
as above is given by exp(−

√
−1πη0(Af )), where η0(Af ) is the limit as ε → 0 of the 

η-invariant of the odd signature operator (−1)k(dAf
∗ε + ∗ε dAf

) acting on the odd forms 
⊕2

k=1Ω
2k−1
Af

(Σf , su(m)), where ∗ε is the Hodge-star operator of the metric gTΣ⊕ ε−2gTR

constructed via (2.2) over the fibration πf : Σf → R/Z. By Lemma 5.13, this shows that

(−1)
n−d

2 (ϕKM τQ,−1) 1
2 = (

√
−1)k exp

(√
−1π
4 η0(adAϕ)

)
, (5.34)

with k ∈ Z/4Z locally constant by continuity of the other terms. Then the integral over 
Mf descends to m times an integral over M ϕ via the m-covering r : Mf → M ϕ. This 
completes the proof of (1.11).

Let us finally show Theorem 1.4. Taking the expansion of the fractional power in p ∈
N∗, the associated asymptotic expansion as in (1.10) follows from Theorem 4.3 as above, 
and to compute the first coefficient (1.13), we can assume that E = π∗ det(∂Σ)−m2−1

2 . 
Using [8, §4] and [18] as above, the analogue of Lemma 5.13 holds for det(∂Σ) over 
TΣ instead of KM , replacing dA by the usual exterior differential d on Ω•(Σ, C). Thus 
the parallel transport in E along γ with respect to the connection induced by (5.29)
is given by (

√
−1)k exp(−

√
−1π
4 (m2 − 1)η0(0)) for some k ∈ Z/4Z, where η0(0) is the 

limit as ε → 0 of the η-invariant of the usual odd signature operator (−1)k(d ∗ε + ∗ε d)
acting on ⊕2

k=1Ω2k−1(Σf , C). By definition of the ρ-invariant in [11, Th.2.4] and using 
dim su(m) = m2 − 1, we get

ρ(adAϕ) = η0(adAϕ) − (m2 − 1)η0(0). (5.35)

This completes the proof of (1.13). �
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