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We show that compatible almost-complex structures on symplectic manifolds corre-

spond to optimal positive quantizations.

1 Introduction

A Riemannian metric on a symplectic manifold (M, ω) is ω-compatible if it can be

written as

gω,J(·, ·) := ω(·, J·) , (1)

where J is an almost complex structure on M. Vice versa, an almost complex structure

J is ω-compatible if the bilinear form (1) is a Riemannian metric. Compatible geometric

structures were introduced as an effective auxiliary tool for detecting rigidity phenom-

ena on symplectic manifolds [19]. In the present paper, we show that these structures

naturally arise from the perspective of mathematical physics. Loosely speaking, they

correspond to positive quantizations minimizing a natural physical quantity called

unsharpness, which is one of the main characters of this paper (see Section 3 below).

Quantization is a mathematical recipe behind the quantum-classical correspon-

dence, a fundamental physical principle stating that quantum mechanics contains
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4626 L. Ioos et al.

classical mechanics in the limiting regime when the Planck constant h̄ tends to zero

[17]. There exist two different, albeit related mathematical models of this principle.

Assume that the classical phase space is represented by a closed (i.e., compact without

boundary) symplectic manifold (M, ω). The 1st model, deformation quantization, is a

formal associative deformation

f ∗ g = fg + h̄c1( f , g) + h̄2c2( f , g) + · · ·

of the multiplication on the space C∞(M) of smooth real functions on M such that

f ∗ g − g ∗ f = ih̄{f , g} + O(h̄2), where {·, ·} stands for the Poisson bracket [4]. The

operation ∗ is called the star product, and the Planck constant h̄ plays the role of a

formal deformation parameter.

The 2nd model, geometric quantization, is described as a linear correspondence

f �→ Th̄( f ) between classical observables, that is, real functions f on the phase space

M, and quantum observables, that is, Hermitian operators on a complex Hilbert space.

This correspondence is assumed to respect, in the leading order as h̄ → 0, a number

of basic operations. In the present paper, we focus on Berezin–Toeplitz quantizations

[5, 9, 10, 14, 20, 30, 36], whose distinctive feature is to be positive, that is, to send

non-negative functions to non-negative operators (see Section 2). The known models of

Berezin–Toeplitz quantization on closed symplectic manifolds (see the discussion at the

end of Section 2) determine a deformation quantization [9, 20, 35] and are provided by

certain auxiliary data involving in particular an almost complex structure J compatible

with the symplectic form on the phase space. While deformation quantizations of

closed symplectic manifolds are completely classified up to a natural equivalence, the

classification of Berezin–Toeplitz quantizations is not yet completely understood (see

however [28] for the relation between the two).

The main finding of the present paper is that conversely, any Berezin–Toeplitz

quantization, defined through natural axioms presented in Section 2, gives rise in

a canonical way to a Riemannian metric on the phase space. Specifically, we make

the natural assumption that there exists a complex-valued bi-differential operator

c : C∞(M) × C∞(M) → C∞(M,C) such that the C-linear extension of Th̄ satisfies

Th̄( f )Th̄(g) = Th̄(fg) + h̄ Th̄(c( f , g)) + O(h̄2) , (2)

for all f , g ∈ C∞(M) as h̄ → 0, and we show that this induces a Riemannian metric G on

M by the formula

c( f , g) = −1

2
G(sgrad f , sgrad g) ,
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Quantization and Least Unsharpness Principle 4627

where sgrad f stands for the Hamiltonian vector field of a function f on M (see

Theorem 4.1 (I) below).

Leaving precise definitions for Section 4, let us discuss the above-mentioned

results informally and present a motivation coming from physics. To this end recall that

it is classically known, starting from the Groenewold–van Hove theorem, that a Berezin–

Toeplitz correspondence cannot be a genuine morphism between the Lie algebras of

functions and operators. We focus on yet another constraint on the precision of Berezin–

Toeplitz quantizations, which we call unsharpness, and which is governed by the

Riemannian metric G defined above. The notion of unsharpness is closely related to the

Heisenberg uncertainty principle. It comes from an analogy between quantization and

measurement based on the formalism of positive operator valued measures (POVMs),

which serves both subjects, and which we briefly recall in Section 2. The unsharpness

metric is a particular instance of the noise operator [12] describing, loosely speaking,

the increment of variances in the process of quantization (see the discussion, p. 13).

In this language, we propose the least unsharpness principle, a variational

principle selecting quantizations whose unsharpness metric has minimal possible

volume on phase space. It turns out that the least unsharpness volume equals the

symplectic volume (see Theorem 4.1 (II) below), so that a quantization satisfying the

least unsharpness principle determines a compatible almost complex structure J on

(M, ω), in the sense that its unsharpness metric satisfies G = gω,J as in (1). We refer to

Section 3 for basic properties of unsharpness, while existence of the unsharpness metric

and the least unsharpness principle are stated in Section 4 and proved in Section 5.

The unsharpness metric is a natural geometric invariant of a Berezin–Toeplitz

quantization and can be seen as a 1st step towards classification. As a case study,

we show in Section 6 that for SU(2)-equivariant quantizations of the two-dimensional

sphere, the unsharpness metric completely determines the quantization up to conjuga-

tion and up to 2nd order as h̄ → 0. Further comments on classification can be found in

Section 8.3.

Some historical remarks are in order. A canonical appearance of Riemannian

geometry in quantization was discussed on a number of occasions in physical literature.

Anandan and Aharonov [1] and Ashtekar and Schilling [3] developed a geometric

approach to quantum mechanics based on the Fubini–Study metric on the projective

space of pure quantum states. Klauder (see, e.g., [29]) studied a model of a path-

integral quantization where the role of a metric was to define a Brownian motion

on the phase space. The idea of selecting optimal quantizations as those possessing

the least uncertainty goes back to Gerhenstaber [18]. He deals with quantizations
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4628 L. Ioos et al.

that do not necessarily preserve positivity, and his least uncertainty principle implies

that unsharpness identically vanishes on some restricted class of observables (see

Section 8.1 for further discussion). Finally, while classification of equivariant quanti-

zations is known in the context of deformation quantization [2, 7], our setting, including

the notion of equivalence, is substantially different. The case of SU(2)-equivariant

Berezin–Toeplitz quantizations of the sphere that we settle in Section 6 is, to the best of

our knowledge, the 1st one where a complete classification is currently available.

2 Berezin–Toeplitz Quantization

Given a finite-dimensional complex Hilbert space H, we write L(H) for the space of

all Hermitian operators (representing quantum observables), and S(H) ⊂ L(H) for the

subset of all non-negative trace-one Hermitian operators (representing quantum states).

Definition 2.1. An L(H)-valued POVM on a set M equipped with a σ -algebra C is a map

� : C → L(H) that satisfies the following conditions:

• �(∅) = 0 and �(M) = 1l ;

• �(X) ≥ 0 for every X ∈ C ;

• (σ -additivity) �
(⊔

i∈N Xi

) = ∑
i∈N �(Xi) for any sequence of pair-wise disjoint

subsets {Xi ∈ C}i∈N.

According to [16], for every L(H)-valued POVM measure �, there exist a proba-

bility measure α on (M, C) and a measurable function F : M → S(H) such that

d� = n F dα , (3)

where n = dimC H.

Remark 2.2. In the context of quantization, the state Fx ∈ S(H) is called the coherent

state associated with x ∈ M and describes the quantization of a classical particle sitting

at x ∈ M in phase space.

For any real classical observable f ∈ L1(M, α), we define the quantization T( f )

as the integral

T( f ) :=
∫

M
f d� ∈ L(H) . (4)
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Quantization and Least Unsharpness Principle 4629

The dual map T∗ : L(H) → L∞(M) with respect to the scalar product on L(H) defined by

((A, B)) :=tr(AB), A, B ∈ L(H), satisfies T∗(A)(x)=n tr(AF(x)), for any x∈M and A ∈ L(H).

Remark 2.3. For a quantum observable A, the function T∗(A) ∈ L∞(M) has a natural

interpretation as the classical observable whose value at x ∈ M is the expectation value

of A at the associated coherent state Fx. Thus, we call T∗(A) the dequantization of the

quantum observable A ∈ L(H).

Definition 2.4. The composition

B := 1

n
T∗T : L1(M, α) −→ L∞(M) ,

f (x) �−→ tr
(
T( f )Fx

) (5)

is called the Berezin transform associated to the POVM �.

Remark 2.5. The Berezin transform can be interpreted as quantization followed by

dequantization. It is a measure of the blurring induced by quantization.

To study the quantum-classical correspondence, we need to introduce a param-

eter h̄ in the above story, which can be thought as the Planck constant, and from which

we recover the laws of classical mechanics as h̄ → 0. This is given a precise meaning

via the following definition.

Definition 2.6. Let (M, ω) be a closed connected symplectic manifold of dimension 2d

and C be the σ -algebra of its Borel sets in M. A Berezin–Toeplitz quantization of M is

the following data:

• a subset � ⊂ R>0 having 0 as limit point ;

• a finite-dimensional complex Hilbert space Hh̄ for each h̄ ∈ � ;

• an L(Hh̄)-valued POVMs �h̄ on M for each h̄ ∈ �,

such that the Toeplitz map Th̄ : C∞(M,C) → End(Hh̄) induced for all h̄ ∈ � by the

quantization map (4) is surjective and satisfies the following estimates, uniformly in

the CN-norms of f , g ∈ C∞(M) for some N ∈ N:

(P1) (norm correspondence)

‖ f ‖ − O(h̄) ≤ ‖Th̄( f )‖op ≤ ‖ f ‖ ,

where ‖ · ‖op is the operator norm and ‖f ‖ := maxx∈M |f (x)| ;
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4630 L. Ioos et al.

(P2) (bracket correspondence)

∥∥∥∥− i

h̄
[Th̄( f ), Th̄(g)] − Th̄({f , g})

∥∥∥∥
op

= O(h̄) ,

where [·, ·] stands for the commutator and {·, ·} for the Poisson bracket (our

convention for the Poisson bracket is {f , g} := −ω(sgradf , sgradg) for all

f , g ∈ C∞(M), where sgradf is the Hamiltonian vector field of f defined by

ιsgradf ω + df = 0);

(P3) (quasi-multiplicativity) There exists a bi-differential operator

c : C∞(M) × C∞(M) → C∞(M,C) such that

‖Th̄( f )Th̄(g) − Th̄(fg) − h̄Th̄(c( f , g))‖op = O(h̄2);

(P4) (trace correspondence)

tr(Th̄( f )) = (2π h̄)−d
∫

M
f Rh̄ dμ ,

where Rh̄ ∈ C∞(M) satisfies Rh̄ = 1 + O(h̄), and dμ = ωd

d! is the symplectic

volume on M;

(P5) (reversibility) The maps Bh̄ : C∞(M) → C∞(M) induced by the Berezin

transform (5) satisfy

Bh̄( f ) = f + O(h̄) .

By uniformly in the CN-norms of f , g ∈ C∞(M), we mean that there exists a

constant C > 0 such that, in axioms (P2) and (P3) and for k = 1, 2 respectively, the

remainders satisfy ∣∣∣O(h̄k)

∣∣∣ ≤ Ch̄k ‖ f ‖CN ‖g‖CN , (6)

while in axioms (P1) and (P5), the remainders satisfy |O(h̄)| ≤ Ch̄ ‖f ‖CN . Writing the

density (3) associated to �h̄ in the form

d�h̄(x) = nh̄ Fh̄,x dαh̄(x) , (7)

the trace correspondence (P4) implies

nh̄ = Vol(M, ω) + O(h̄)

(2π h̄)d
,
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Quantization and Least Unsharpness Principle 4631

and

dαh̄ = 1 + O(h̄)

Vol(M, ω)
dμ , (8)

where Vol(M, ω) > 0 denotes the symplectic volume of (M, ω).

The existence of a Berezin–Toeplitz quantization is a highly non-trivial result.

To discuss it, recall that an almost complex structure J on M is ω-compatible if the

form GJ := ω(·, J ·) is a Riemannian metric on M. We refer to (M, ω, J, GJ) as an

almost-Kähler structure on M. Let us assume additionally that (M, ω) quantizable,

that is, that the cohomology class [ω]/(2π) is integral, and that the almost complex

structure J is integrable, so that (M, ω, J, GJ) is a Kähler manifold. Then there is a

canonical construction of a Berezin–Toeplitz quantization, where � = {1/k}k∈N and

where the Hilbert spaces Hh̄ consist of the global holomorphic sections of a holomorphic

Hermitian line bundle with Chern curvature equal to −ikω, and the associated Toeplitz

map Th̄ sends f ∈ C∞(M) to the multiplication by f followed by the orthogonal L2-

projection on holomorphic sections. The axioms of Definition 2.6 for this construction

have been established by Bordemann, Meinrenken, and Schlichenmaier in [9], using the

theory of Toeplitz structures developed by Boutet de Monvel and Guillemin in [11].

The extension of this theory to general ω-compatible almost complex structures was

established in a series of papers by Guillemin [20], Borthwick and Uribe [10], Schiffman

and Zelditch [37], Ma and Marinescu [30], Charles [14], and the 1st-named author, Lu,

Ma, and Marinescu [23]. The dependence of the remainders in terms of the derivatives

of the functions is discussed in [15].

3 Unsharpness Cocycle

In this section, we study general properties of the bi-differential operator

c : C∞(M)× C∞(M) → C∞(M) from the quasi-multiplicativity property (P3) of a Berezin–

Toeplitz quantization. First note that norm correspondence (P1) implies that, if an

asymptotic expansion such as the one appearing in (P3) holds, then it is unique, and in

particular, the bi-differential operator c is uniquely defined. Then the associativity of

the composition of operators implies that c is a Hochschild cocycle, meaning that for all

f1, f2, f3 ∈ C∞(M), we have

f1c( f2, f3) − c( f1f2, f3) + c( f1, f2f3) − c( f1, f2) f3 = 0 . (9)
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4632 L. Ioos et al.

Denote by c− and c+ its anti-symmetric and symmetric parts, respectively:

c−( f , g) := c( f , g) − c(g, f )

2
and c+( f , g) := c( f , g) + c(g, f )

2
.

By the bracket correspondence (P2), we have Th̄(2c−( f , g) − i{f , g}) = O(h̄), and hence by

the norm correspondence (P1), we get the formula

c−( f , g) = i

2
{f , g} . (10)

Thus, the anti-symmetric part c− (responsible for the non-commutativity of quantum

observables) does not depend on a choice of a quantization. In contrast, the symmetric

part c+ does depend on a choice of a quantization. By the quasi-multiplicativity

property (P3), the cocycle c+ associated to a Berezin–Toeplitz quantization measures

its failure of being a multiplicative morphism on Poisson-commutative subspaces of

C∞(M). From formula (10) and basic properties of the Poisson bracket, we know that c−,

hence also c+, satisfy formula (9) for a Hochschild cocycle.

Definition 3.1. We say that c+ is the unsharpness cocycle of a quantization or simply

its unsharpness.

Note that by formula (4), the operator Th̄( f ) ∈ End(Hh̄) is Hermitian if and only if

f ∈ C∞(M,C) is real valued, and as the square of a Hermitian operator is Hermitian, the

quasi-multiplicativity property (P3) then shows that c+ : C∞(M) × C∞(M) → C∞(M) is

a real-valued bi-differential operator. It is also a symmetric Hochschild cocycle, so that

as explained for example, in [33, Th. 2.15], it is a differential Hochschild coboundary.

This means that there exists a real-valued differential operator a : C∞(M) → C∞(M)

such that

c+( f , g) = a(fg) − f a(g) − g a( f ) . (11)

for all f , g ∈ C∞(M). Since Th̄(1) = 1l, we have that c+(1, 1) = 0, and therefore a(1) = 0.

Note that a is determined up to its 1st-order part. The following result shows that the

positivity preserving property imposes a strong condition on c+.

Theorem 3.2. The bi-differential operator c+ is of order (1, 1).

The proof is given in Section 7 below. Theorem 3.2 sheds light on the differential

operator a appearing in the coboundary formula (11). In fact, let us choose some
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Quantization and Least Unsharpness Principle 4633

Darboux coordinates U ⊂ M, and take f , g ∈ C∞(M) with compact support in U. In

these coordinates, we can write

c+( f , g) =
2d∑

j, k=1

ajk ∂jf ∂kg , (12)

with smooth ajk = akj ∈ C∞(U) for each 1 ≤ j, k ≤ 2d. Then one can choose the

differential operator

a := 1

2

2d∑
j, k=1

∂j

(
ajk∂k

)
. (13)

in the coboundary formula (11). Using integration by parts, we see that (13) is symmetric

with respect to the canonical L2-scalar product on C∞(M) associated to the symplectic

volume, and as the differential operator a is determined up to its 1st-order part, it is

the unique such choice.

Example 3.3. The following result refers to the Berezin–Toeplitz quantization

described at the end of the previous section. In this fundamental example, the

unsharpness cocycle can be computed explicitly, and formula (14) below can be found

for instance in [40, p. 257] for the Kähler case and in [22, 23] for the almost-Kähler case.

Theorem 3.4. Assume that (M, ω) is quantizable, so that the cohomology class [ω]/(2π)

is integral. Then for every ω-compatible almost complex structure J ∈ End(TM), there

exists a Berezin–Toeplitz quantization of (M, ω) whose unsharpness cocycle satisfies

c+( f , g) = −1

2
(∇f , ∇g) , (14)

for all f , g ∈ C∞(M,R), where the gradient and the product are defined with respect to

the Riemannian metric GJ := ω(·, J ·).

Using that


(fg) + 2(∇f , ∇g) = f 
g + g
f , (15)

where 
 is the (positive) Laplace–Beltrami operator associated with GJ , the differential

operator in the coboundary formula (11) can then be chosen to be a = 
/4, and by basic

properties of 
, it is the unique L2-symmetric choice with respect to the symplectic

volume form, as it coincides with the Riemannian volume form of GJ . Using the

J-invariance of the metric and the relation J sgradf = −∇f between Hamiltonian vector
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4634 L. Ioos et al.

field and gradient of a function f ∈ C∞(M) for an ω-compatible metric, formula (14)

translates into

c+( f , g) = −1

2
GJ(sgrad f , sgrad g) . (16)

Example 3.5. We now give an example of a Berezin–Toeplitz quantization whose

unsharpness cocycle c+ is not of the form (16) for some almost-Kähler structure

on (M, ω). This example serves as a paradigm for the construction presented in the

proof of one of our main results, Theorem 4.1(III) below. Assume (M, ω) quantizable

and equipped with an almost-Kähler structure (M, ω, J, GJ), and consider the induced

Berezin–Toeplitz quantization of Theorem 3.4. Fix t > 0, and using the notations of

Example 3.3, consider for any h̄ ∈ � = {1/k}k∈N the map T(t)
h̄ : C∞(M) → L(Hh̄) defined

for any f ∈ C∞(M) by

T(t)
h̄ ( f ) := Th̄(e−th̄
f ) .

Observe that the heat flow preserves positivity, so that T(t)
h̄ is in fact the quantization

map (4) induced by a POVM construction. Then from the classical small time asymptotic

expansion of the heat kernel (see e.g., [6, Th. 2.29, (2.8)]), as h̄ → 0, we have

e−th̄
f = f − th̄
 f + O(h̄2) ‖f ‖C4 , (17)

and this implies in particular that all the axioms of Definition 2.6 hold. Let us now

calculate the associated unsharpness cocycle, denoted by c(t)
+ . For any h̄ ∈ � and

A, B ∈ End(Hh̄), put A•B := 1
2 (AB+BA), and recall formula (15) for the Laplace–Beltrami

operator. Then as h̄ → 0, we have

T(t)
h̄ ( f ) • T(t)

h̄ (g) = Th̄( f ) • Th̄(g) − th̄Th̄( f 
g + g
f ) + O(h̄2)

= Th̄(fg) − h̄Th̄

(
1

2
(∇f , ∇g) + t (
(fg) + 2(∇f , ∇g))

)
+ O(h̄2)

= Th̄(fg) + h̄T(t)
h̄

(
−

(
1

2
+ 2t

)
(∇f , ∇g)

)
+ O(h̄2) ,

(18)

so that, recalling that the quasi-multiplicativity property (P3) determines the

unsharpness cocycle uniquely via norm correspondence (P1), we get

c(t)
+ ( f , g) = −

(
1

2
+ 2t

)
(∇f , ∇g)

= −1

2
(1 + 4t) GJ(sgrad f , sgrad g) .

(19)
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Quantization and Least Unsharpness Principle 4635

In particular, we see that c(t)
+ is of the form (16) for the Riemannian metric

G(t) := (1 + 4t) GJ on M, whose volume is strictly bigger than the volume of the

almost-Kähler metric GJ . As the volume of an almost-Kähler metric is always equal

to the symplectic volume of (M, ω), we see that c(t)
+ is not the unsharpness cocycle of a

Berezin–Toeplitz quantization coming from Theorem 3.4.

4 The Least Unsharpness Principle

In this section, we state the main theorem on unsharpness of Berezin–Toeplitz quantiza-

tions, which we call the least unsharpness principle, and discuss its physical meaning.

Recall from Theorem 3.2 that the unsharpness cocycle c+ of a Berezin–Toeplitz

quantization is a bi-differential operator of order (1, 1), so that there exists a bilinear

symmetric form G on TM such that

c+( f , g) =: −1

2
G(sgrad f , sgrad g) , (20)

where sgradf , sgradg denote the Hamiltonian vector fields of f , g ∈ C∞(M,R). Our main

result provides a description of this bilinear form G.

Theorem 4.1. Let (M, ω) be a closed symplectic manifold.

(I) For every Berezin–Toeplitz quantization of M, the form G is a Riemannian

metric on M, which can be written as the sum

G = ω(·, J·) + ρ(·, ·) , (21)

where J ∈ End(TM) is a compatible almost complex structure on (M, ω) and

ρ is a non-negative symmetric bilinear form on TM.

(II) We have Vol(M, G) ≥ Vol(M, ω), with equality if and only if ρ ≡ 0.

(III) If (M, ω) is quantizable, then every Riemannian metric of the form (21) arises

from some Berezin–Toeplitz quantization.

The proof is given in Section 5. Let us mention that the proof of item (III) of

the theorem is modeled on Example 3.5 above and is constructive. We produce the

desired Berezin–Toeplitz quantization with the unsharpness metric given by (21) as the

composition of the almost-Kähler quantization associated to (ω, J) and an explicit, albeit

non-canonical, Markov operator depending on all the data including ρ.
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4636 L. Ioos et al.

Remark 4.2. For a given metric G on M, the decomposition (21) is in general not

unique. However, as the proof of Theorem 4.1 (I) will show, there exists a unique

ω-compatible almost complex structure J, which additionally is G-orthogonal, that is,

G(Jξ , Jη) = G(ξ , η) for all ξ , η ∈ TM. Furthermore, for such a G, the symmetric bilinear

form ρ(ξ , η) = G(ξ , η) − ω(ξ , Jη) is non-negative, thus providing decomposition (21).

Before going to the proof of Theorem 4.1 in the next section, let us first discuss

the physical meaning of the unsharpness cocyle c+ associated with a Berezin–Toeplitz

operator, which shows from general principles that it is at least non-negative. With

every quantum state θ ∈ S(Hh̄), one associates a classical state (called the Husimi

measure), which is the probability measure μθ on M such that

∫
M

f dμθ = tr(Th̄( f ) θ) , f ∈ C∞(M) . (22)

This equality can be interpreted as follows: the expectation of any classical observable

f in the classical state μθ coincides with the expectation of the corresponding quantum

observable Th̄( f ) in the state θ . What happens with variances? It turns out that the

quantum variance is in general bigger than the classical one. More precisely, we have

that

Var( f , μθ) =
∫

M
f 2dμθ −

(∫
f dμθ

)2

,

Var(Th̄( f ), θ) = tr(Th̄( f )2θ) − (
tr(Th̄( f )θ)

)2 ,

and hence

Var( f , μθ) = Var(Th̄( f ), θ) + tr(
h̄( f )θ) , (23)

where


h̄( f ) := Th̄( f 2) − Th̄( f )2 . (24)

The operator 
h̄( f ) is called the noise operator (see e.g., [12]), whose main property is

that it is a non-negative operator. It describes the increase of variances, which can be

interpreted as the unsharpness of the quantization. Then by the quasi-multiplicativity

property (P3), we have


h̄( f ) = −h̄ Th̄

(
c+( f , f )

) + O(h̄2) . (25)
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Quantization and Least Unsharpness Principle 4637

Look at the expectation of 
h̄( f ) at the coherent state Fh̄,x of Remark 2.2 associated

to �h̄,

tr
(

h̄( f )Fh̄,x

) = −h̄ tr
(
Th̄ (c+( f , f ))Fh̄,x

) + O(h̄2)

= −h̄Bh̄

(
c+( f , f )

)
(x) + O(h̄2)

= −h̄ c+( f , f )(x) + O(h̄2) .

(26)

This explains the name of unsharpness cocycle for c+. Since the noise operator is non-

negative, we get the following fundamental property of the unsharpness cocycle,

− c+( f , f )(x) ≥ 0 for all x ∈ M . (27)

This shows that the symmetric bilinear form G defined in equation (20) is at least semi-

positive. This property is the 1st step towards the proof of Theorems 4.1, showing that

G is in fact a Riemannian metric, called the unsharpness metric of the quantization.

Note that this property is also at the basis of the proof of Theorem 3.2.

Define the total unsharpness of a Berezin–Toeplitz quantization as the volume

of the phase space M with respect to the unsharpness metric. With this language,

statement (II) of Theorem 4.1 can be interpreted as the least unsharpness principle:

the minimal possible total unsharpness equals the symplectic volume, and the least

unsharpness metrics are induced by compatible almost-complex structures on M.

Remark 4.3. Let us assume that the Berezin transform admits an asymptotic expan-

sion up to the 1st order as h̄ → 0 of the following form for all f ∈ C∞(M),

Bh̄( f ) = f + h̄Df + O(h̄2) , (28)

where D is a differential operator, strengthening the reversibility property (P5). Then by

Definition 2.4 of the Berezin transform, formula (4) for the quantization map and the

expansion (8) for αh̄, for all f , g ∈ C∞(M), we have

1

nh̄
tr(Th̄( f )Th̄(g)) =

∫
M
Bh̄( f ) g dαh̄

=
∫

M
fg dαh̄ + h̄

∫
M

(Df ) g dμ + O(h̄2) .

(29)
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4638 L. Ioos et al.

On the other hand, by the quasi-multiplicativity property (P3), using formula (10) and

basic properties of the Poisson bracket, we get

1

nh̄
tr(Th̄( f )Th̄(g)) =

∫
M

(fg + h̄c( f , g) + O(h̄2)) dαh̄

=
∫

M
fg dαh̄ + h̄

∫
M

c+( f , g) dμ + O(h̄2) .

(30)

Then taking f , g ∈ C∞(M) with compact support in Darboux coordinates, using formulas

(12) and (13) and integration by parts, we then get

D = −2a , (31)

where a : C∞(M) → C∞(M) is the unique L2-symmetric differential operator on C∞(M)

with respect to symplectic volume satisfying the coboundary formula (11). In light of

Example 3.3, this fact generalizes the Karabegov–Schlichenmaier expansion [25, 28] for

the Berezin–Toeplitz quantizations of Theorem 3.4.

Another consequence of the improvement (28) of the reversibility property (P5)

is that “unsharpness equals variance on coherent states”. To see this, recall definition

(22) of the Husimi measure on the coherent state Fh̄,x ∈ S(Hh̄) of Remark 2.2. Then the

discussion above implies

Var( f , μFx,h̄
) = Bh̄( f 2) − Bh̄( f )2

= −2h̄ c+( f , f ) + O(h̄2) .
(32)

Thus by formula (23) and (26), we get

Var(Th̄( f ), Fh̄,x) = −h̄ c+( f , f )(x) + O(h̄2) , (33)

so that the variance of a quantized observable at coherent states is equal to its

unsharpness.

In their geometric formulation of quantum mechanics, Ashtekar and Shilling

[3,§ 3.2.3, (26)] consider the projectivization P(Hh̄) as a “quantum phase space”: a line

ξ ∈ P(Hh̄) is identified with the pure state given by the rank-one projector to ξ . In this

setting, they give a physical interpretation of the Fubini–Study metric gFS on P(Hh̄) in

terms of the variance of a quantum observable A ∈ L(Hh̄) at a pure state ξ ∈ P(Hh̄).

Specifically, write vA for the vector field on P(Hh̄) induced by the infinitesimal action of
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Quantization and Least Unsharpness Principle 4639

iA ∈ u(Hh̄), seen as an element of the Lie algebra of the group of unitary operators U(Hh̄)

acting on P(Hh̄). Then the variance of A at ξ is given by

Var(A, ξ) = 1

2
gFS

ξ (vA, vA) . (34)

Back to the quantization, assume further that the coherent states Fh̄,x ∈ S(Hh̄) are pure

for all x ∈ M. Consider the induced map

Fh̄ : M −→ P(Hh̄) . (35)

Then equation (33) says that the Fubini–Study length of the vector field vA induced

by the quantum observable A := Th̄( f ) ∈ L(Hh̄) at the coherent state Fh̄,x ∈ P(Hh̄)

approaches, as h̄ → 0, the length of the Hamiltonian vector field sgrad f at a point

x ∈ M with respect to our unsharpness metric. In the case of the Kähler quantizations

described at the end of Section 2, the map (35) coincides with the Kodaira map. Then

the picture described above is closely related to a theorem of Tian [38] showing that the

pullback of the Fubini–Study metric by the Kodaira map approaches the Kähler metric

as k → +∞.

5 Proof of the Main Theorem

In this section, we prove Theorem 4.1. To this end, first recall from the previous section

that the non-negativity of the noise operator (24) leads to the semi-positivity property

(27) for the unsharpness. To establish the stronger statement (i) of Theorem 4.1, we will

use a stronger property of noise operators coming from the general theory of POVM-

based quantum measurements, called the noise inequality. It appears in several sources

[31], [21, Theorem 7.5], [32, Theorem 9.4.16], albeit none of them contains the version we

need. For the sake of completeness, we present a proof that closely follows [32] and is

based on an idea from [26].

Consider a set M equipped with a σ -algebra C together with a finite-dimensional

Hilbert space H, and let F be an L(H)-valued POVM in the sense of Definition 2.1. For a

bounded function u ∈ L∞(M), we define the noise operator


F(u) :=
∫

M
u2 dF −

(∫
M

u dF
)2

.
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4640 L. Ioos et al.

For a pair of bounded functions u, v ∈ L∞(M), set

U :=
∫

M
u dF, V :=

∫
M

v dF .

Lemma 5.1. For every state θ ∈ S(H), we have the inequality

tr
(

F(u)θ

)
tr

(

F(v)θ

) ≥ 1

4
|tr ([U, V]θ)| 2 . (36)

Proof. By the Naimark dilation theorem (see e.g., [32, Theorem 9.4.6]), there exists an

isometric embedding of H into a (possibly infinite-dimensional) Hilbert space H ′ and an

L(H ′)-valued projector valued measure P such that for every subset X ⊂ C, we have

F(X) = �P(X)�∗ ∈ L(H) , (37)

where � : H ′ → H is the orthogonal projector, so that �∗ : H → H ′ is the inclusion.

Here L(H ′) stands for the space of all bounded Hermitian operators on H ′, and an L(H ′)-
projector valued measure is by definition a map P : C → L(H ′) satisfying the axioms

of Definition 2.1, and such that the operators P(X), X ∈ C, are pair-wise commuting

orthogonal projectors.

Define a pairing

q : L(H ′) × L(H ′) → End(H) ,

q(S, T) := �S(1 − �∗�)T�∗ .

We claim that for every state θ ∈ S(H) and all S, T ∈ L(H ′), we have

tr(q(S, S)θ) tr(q(T, T)θ) ≥ |tr(q(S, T)θ)| 2 . (38)

To see this, note that 1 − �∗� : H → H is the orthogonal projector on the orthogonal

complement of H ′, so that

tr(q(S, T)θ) = tr((1 − �∗�)T �∗θ� S(1 − �∗�)) .

Then (38) follows from Cauchy–Schwarz inequality applied to the semi-norm on the

space End(H ′) of bounded operators of H ′ defined by (A, B)θ := tr(A �∗θ� B∗), for all

A, B ∈ End(H ′).
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Quantization and Least Unsharpness Principle 4641

Set now S = ∫
u dP and T = ∫

v dP. Since S and T commute, we have

[�S�∗, �T�∗] = q(T, S)−q(S, T). On the other hand, by definition (37), we have �S�∗ = U

and �T�∗ = V, while using an approximation by simple functions, one computes that

q(S, S) = 
F(u) and q(T, T) = 
F(v). The result then directly follows from (38). �

PROOF OF (I): Applying Lemma 5.1 to the Berezin–Toeplitz POVM �h̄ of

Definition 2.6, for every state θ ∈ S(Hh̄) and observables u, v ∈ C∞(M), we get

tr
(

h̄(u)θ

)
tr

(

h̄(v)θ

) ≥ 1

4

∣∣tr([Th̄(u), Th̄(v)]θ)
∣∣ 2 . (39)

Now by Definition 2.4 of the Berezin transform and the expression (24) for the noise

operator, we know that for all u ∈ C∞(M),

tr
(

h̄(u)Fh̄,x

) = −h̄B(c+(u, u))(x) + O(h̄2) , (40)

and for all u, v ∈ C∞(M),

−i tr([Th̄(u), Th̄(v)]Fh̄,x) = h̄ tr(Th̄({u, v})Fh̄,x) + O(h̄2)

= h̄ Bh̄({u, v})(x) + O(h̄2) .
(41)

Thus, applying the noise inequality (39) with θ being the coherent state Fh̄,x, we get that

Bh̄(c+(u, u))(x)Bh̄(c+(v, v))(x) ≥ 1

4
|Bh̄({u, v})(x)|2 , (42)

so that the reversibility property (P5) yields

c+(u, u)c+(v, v) ≥ 1

4
|{u, v}|2 . (43)

Thus, for all ξ , η ∈ TxM, picking functions u, v ∈ C∞(M) with sgrad u(x) = ξ ,

sgrad v(x) = η and by definition (20) of the bilinear form G, we get

G(ξ , ξ)G(η, η) ≥ |ω(ξ , η)|2 . (44)

Now thanks to the non-negativity of the noise operator, which follows from Lemma 5.1,

we already know that G is a semi-positive symmetric bilinear form by formula (27).

Inequality (44) then shows that G is in fact positive, so that it defines a Riemannian

metric on M.
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4642 L. Ioos et al.

Let K ∈ End(TM) the G-antisymmetric operator defined by

G(·, ·) = ω(·, K·) . (45)

Then there exists an orthonormal basis {ej, fj}1≤j≤dim M of TM such that Kej = αjfj and

Kfj = −αjej, for αj ≥ 0 for all 1 ≤ j ≤ dim M. Define an almost complex structure

J ∈ End(TM) by the formula

Jej = fj and Jfj = −ej . (46)

By definition, this almost complex structure is compatible with ω, and G is J-invariant.

Set

ρ(·, ·) := G(·, ·) − ω(·, J·) . (47)

We then need to show that for any ξ ∈ TM, we have

ρ(ξ , ξ) ≥ 0 . (48)

But using (44), we know that

G(ξ , ξ) = G(ξ , ξ)1/2 G(Jξ , Jξ)1/2 ≥ ω(ξ , Jξ) , (49)

which readily implies (48) by definition (47) of ρ.

PROOF OF (II): Recall that the volume of an ω-compatible metric is always equal to the

symplectic volume Vol(M, ω). Then the statement (II) follows from the general form of

an unsharpness metric G given by formula (21).

PROOF OF (III): The construction of a Berezin–Toeplitz quantization with general

unsharpness metric of the form (21) is based on Theorem 3.4 and is a modification of the

construction of Example 3.5. Instead of dealing with the heat semigroup, which becomes

elusive when the form ρ is degenerate, we construct an explicit family of Markov kernels

such that the desired quantization is the composition of the almost-Kähler quantization

associated with J from formula (21) with the corresponding Markov operator (In the

language of quantum measurement theory, the POVM of the quantization constructed

below is a smearing of the Berezin–Toeplitz POVM of Theorem 3.4 by the explicitly

constructed Markov operator.). Let us pass to precise arguments.

All the estimates in the proof are meant uniformly in x0 ∈ M. Let J ∈ End(TM) be

a compatible almost complex structure on (M, ω) and let ρ be a non-negative symmetric
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Quantization and Least Unsharpness Principle 4643

bilinear form on TM. Consider the Riemannian metric g over M defined by the formula

g(·, ·) = ω(·, J·) . (50)

For any t > 0, we define a smooth endomorphism of the tangent bundle TM by the

formula

At := t
(
−πJρgJ + t1l

)
∈ End(TM) , (51)

where ρg ∈ End(TM) is the non-negative symmetric endomorphism defined by

g(ρg·, ·) = ρ . (52)

Then At is positive symmetric with respect to g, for all t > 0.

Let ε > 0 be smaller than the injectivity radius of (M, g). For any x0 ∈ M, consider

an isometric identification (Tx0
M, g) � (R2d, 〈·, ·〉), where 〈·, ·〉 is the standard Euclidean

product of R
2d, and let Z = (Z1, · · · Z2d) ∈ R

2d be the induced normal coordinates on

the geodesic ball B(x0, ε) ⊂ M of radius ε centered at x0. We write dZ for the Lebesgue

measure on R
2d. Let ϕ : [0, +∞) → [0, 1] be a smooth function identically equal to 1 over

[0, ε/2) and to 0 over [ε, +∞). We define an operator Kρ
t acting on f ∈ C∞(M,R) by the

following formula in normal coordinates around x0 ∈ M,

Kρ
t f (x0) := 1

αt(x0)

∫
B(x0,ε)

ϕ(|Z|)f (Z) e
−π

〈
A−1

t Z,Z
〉
dZ , (53)

where αt(x0) := ∫
B(x0,ε)ϕ(|Z|) e

−π
〈
A−1

t Z,Z
〉
dZ is chosen so that Kt1 ≡ 1 for all t > 0. Note

that f ≥ 0 implies Ktf ≥ 0 for all t > 0.

Fix x0 ∈ M, and consider the isometric identification (Tx0
M, g) � (R2d, 〈·, ·〉) in

which At is diagonal, so that using definition (51), we can write

At,x0
= diag

(
t(λ1 + t), · · · , t(λ2d + t)

)
, (54)

where {λj ≥ 0}1≤j≤2d are the eigenvalues of −πJρgJ over Tx0
M. Using the multi-index

notation α = (α1, · · · , α2d) ∈ N
2d, we will use the following Taylor expansion of f up to

order 4 as |Z| → 0,

f (Z) =
∑

0≤|α|≤3

∂ |α|f
∂Zα

(x0)
Zα

α!
+ O(|Z|4)‖f ‖C4 . (55)
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4644 L. Ioos et al.

On the other hand, using the change of variables Zj �→ Zj/t1/2(λj+t)1/2 for each 1 ≤ j ≤ 2d

and the exponential decrease of the Gaussian function, we get a constant δ > 0 for any

α ∈ N
2d such that the following estimate holds as t → 0,

∫
B(x0,ε)

ϕ(|Z|)Zα e
−π

〈
A−1

t Z,Z
〉
dZ =

∫
R2d

Zα e
−π

∑2d
j=1

(
t−1(λj+t)−1Z2

j

)
dZ

−
∫
R2d

(1 − ϕ(|Z|))Zα e
−π

∑2d
j=1

(
t−1(λj+t)−1Z2

j

)
dZ

=
2d∏
j=1

t1/2(λj + t)1/2
(
t(λj + t)

)αj/2
∫
R2d

Zα e−π |Z|2dZ + O(e−δ/t) .

(56)

Note that we can then explicitly evaluate the integral in the last line of (56) using

basic properties of the Gaussian function, and it vanishes as soon as there is an odd

monomial inside Zα. Then considering the Taylor expansion (55) inside the right hand

side of equation (53) and using the estimate (56), we get as t → 0,

Kρ
t f (x0) = f (x0) +

∏2d
k=1 t1/2(λk + t)1/2

αt(x0)

⎛
⎝ 2d∑

j=1

t(λj + t)

4π

∂2f

∂Z2
j

(x0) + O(t2) ‖f ‖C4

⎞
⎠ . (57)

On the other hand, it follows from the definition of αt and the estimate (56) that as t → 0,

we have

αt(x0) =
2d∏
j=1

t1/2(λj + t)1/2(1 + O(e−δ/t)) . (58)

Then we get from equation (57) that as t → 0,

Kρ
t f (x0) = f (x0) + t

2d∑
j=1

λj + t

4π

∂2f

∂Z2
j

(x0) + O(t2) ‖f ‖C4

= f (x0) + t
2d∑
j=1

λj

4π

∂2f

∂Z2
j

(x0) + O(t2) ‖f ‖C4 .

(59)

Then writing Th̄ for the Berezin–Toeplitz quantization of (M, ω, J), the quantization Tρ

h̄

defined for all f ∈ C∞(M,R) by

Tρ

h̄( f ) := Th̄

(
Kρ

h̄ f
)

, (60)
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Quantization and Least Unsharpness Principle 4645

has unsharpness metric G given by formula (21): in fact, for any u, v ∈ C∞(M,R), writing

∇gu, ∇gv for their gradient with respect to g and in normal coordinates around x0 ∈ M

as above, we get from the last line of (59) and following the computations of (18) that

the unsharpness cocycle cρ
+ associated with Tρ

h̄ satisfies

cρ
+(u, v)(x0) = −1

2

2d∑
j=1

(
∂ju(x0) ∂jv(x0) + λj

π
∂ju(x0) ∂jv(x0)

)

= −1

2

(
gx0

(∇gu, ∇gv) − gx0
(JρgJ∇gu, ∇gv)

)

= −1

2

(
gx0

(sgrad u, sgrad v) + ρx0
(sgrad u, sgrad v)

)
.

(61)

This shows that G = g + ρ, as required.

6 Case Study: SU(2)–Equivariant Quantizations

Definition 6.1. Two Berezin–Toeplitz quantizations Th̄ and T ′
h̄ with families of Hilbert

spaces {Hh̄} and {H ′
h̄}, h̄ ∈ �, respectively, are called equivalent if there exists a sequence

of unitary operators Uh̄ : Hh̄ → H ′
h̄ such that for all f ∈ C∞(M),

‖Uh̄Th̄( f )U−1
h̄ − T ′

h̄( f )‖op = O(h̄2) . (62)

Observe that if two quantizations are equivalent, their unsharpness metrics

coincide. In this section, we prove a converse statement in the context of SU(2)-

equivariant quantizations of the two-dimensional sphere (see Section 8.3 below for

further discussion). We consider the standard Kähler metric on the two-sphere S2

normalized so that the total area equals 2π . We denote by L the line bundle dual to the

tautological one, and by Hk the k + 1-dimensional space of holomorphic sections of its

k-th tensor power Lk. One can identify Hk with the space of homogeneous polynomials of

two variables, so the group SU(2) acts on Hk via an irreducible unitary representation.

Furthermore, SU(2) acts on the space of Hermitian operators L(Hk) by conjugation. On

the other hand, the space C∞(S2) carries the natural action of SU(2) by the change of

variables. A quantization Qh̄ : C∞(S2) → L(Hk), h̄ ∈ � := {1/k}k∈N, is called SU(2)-

equivariant if it intertwines the corresponding (real) representations. For instance, the

standard Berezin–Toeplitz quantization Th̄ sending f ∈ C∞(S2) to the multiplication by

f followed by the orthogonal projection to the space of holomorphic sections is SU(2)-

equivariant, and the same holds true for its images T(t)
h̄ under diffusion as defined in
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4646 L. Ioos et al.

Example 3.5. Note that the quantizations T(t)
h̄ are pairwise non-equivalent for different

values of t as the corresponding unsharpness metrics are different.

Theorem 6.2. Every SU(2)-equivariant quantization of S2 is equivalent to T(t)
h̄ for some

t ≥ 0.

Proof. STEP 1 (APPLYING SCHUR LEMMA): Given any SU(2)-equivariant quantization Qh̄,

pass to its complexification (denoted by the same letter)

Qh̄ : C∞(S2,C) → L(Hk) ⊗ C = H∗
k ⊗ Hk .

On the one hand, C∞(S2,C) splits into the direct sum of irreducible summands Vj, j =
0, 1, . . . corresponding to the eigenspaces of the Laplace–Beltrami operator associated

to the Kähler metric with the eigenvalue 2j(j + 1), with each Vj isomorphic to H2j as an

SU(2)-representation. On the other hand,

H∗
k ⊗ Hk = H2k ⊕ H2k−2 ⊕ · · · ⊕ H0 .

By the Schur Lemma, when h̄ = 1/k, we have that Qh̄(Vj) ⊂ H2j with respect to this

decomposition, and furthermore there exists a constant αh̄,j ∈ C such that, up to

conjugation, we have

Qh̄ = (1 + αh̄,j)Th̄ on Vj . (63)

STEP 2 (LEGENDRE POLYNOMIALS): In what follows we introduce another parame-

ter, n ∈ N. We call a sequence {bh̄,n}n∈N of the class ON(h̄m) with m, N ∈ N if for some

c > 0 we have |bh̄,n| ≤ c h̄m(n + 1)N for all n. In the sequel, the dependence on h̄ of

such sequences will be made implicit. Denote by Pn(z) the n-th Legendre polynomial

considered as a function on the unit sphere S2 = {x2 + y2 + z2 = 1} lying in Vn. We write

∇ for the gradient with respect to the standard metric on S2 normalized so that the total

area equals 2π . The standard formulas for the Legendre polynomials (see e.g., formulas

(43) and (44) in [39]) readily yield

P1Pn = qnPn+1 + rnPn−1, qn = n + 1

2n + 1
, rn = 1 − qn , (64)

and

(∇P1, ∇Pn) = sn(−Pn+1 + Pn−1), sn = 2n(n + 1)

2n + 1
. (65)
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Quantization and Least Unsharpness Principle 4647

We shall use that there exists c > 0 such that

∀r ∈ N ∃R ∈ N : ‖Pn‖Cr ≤ c(n + 1)R . (66)

This (with R = r) follows immediately from the general result about the growth of

Cr-norms of the Laplace–Beltrami eigenfunctions on Riemannian manifolds, see [8,

Corollary 1.1]. Using the fact that maxx∈S2 Pn = 1 by [27, Chapter 7, Theorem 17(i)], the

norm correspondence property (P1), which holds uniformly in CN-norm for some N ∈ N,

together with formula (66) implies

‖Qh̄(Pn)‖op = 1 − ON(h̄), ‖Th̄(Pn)‖op = 1 − ON(h̄) .

Since Qh̄(Pn) = (1 + αh̄,n)Th̄(Pn) by (63), it follows that

αh̄,n = ON(h̄) . (67)

In the course of the proof, we shall increase the value of N according to our needs.

STEP 3 (MAIN CALCULATION): Since Qh̄ is SU(2)-equivariant, the corresponding unsharp-

ness metric equals μ times the standard one, for some constant μ ≥ 1. Thus, the

quasi-multiplicativity property (P3), which holds uniformly in CN-norm for some N ∈ N,

together with formula (66) yields

Qh̄(P1)Qh̄(Pn) = Qh̄

(
P1Pn − μ

2
h̄(∇P1, ∇Pn) + ON(h̄2)

)
. (68)

At the same time

Th̄(P1)Th̄(Pn) = Th̄

(
P1Pn − 1

2
h̄(∇P1, ∇Pn) + ON(h̄2)

)
, (69)

mind that here μ is replaced by 1. By (63) we have

Qh̄(Pi) = (1 + αh̄,i)Th̄(Pi) . (70)

Identities (68) and (69) combined with (64), (65), and (70) enable us to express

Th̄(P1)Th̄(Pn) as a linear combination of Th̄(Pn+1) and Th̄(Pn−1) in two different ways.

The calculation is straightforward, and we obtain the result:

AnTh̄(Pn+1) + BnTh̄(Pn−1) = A′
nTh̄(Pn+1) + B′

nTh̄(Pn−1) + ON(h̄2) , (71)
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4648 L. Ioos et al.

for some An, A′
n ∈ C and Bn, B′

n ∈ C, n ∈ N, where

Bn = (1 + αh̄,1)−1(1 + αh̄,n)−1(1 + αh̄,n−1)(rn − h̄μsn/2) ,

B′
n = rn − h̄sn/2 .

Projecting equation (71) to the space H2n−2 (which contains Th̄(Vn−1)) and using that the

operator norm of Th̄(Pn−1) is bounded away from zero (see Step 2), we get that

Bn − B′
n = ON(h̄2) .

By using (67) and explicit expressions for qn, rn, sn we get

αh̄,n−1 − αh̄,n − αh̄,1 = (n + 1)(μ − 1)h̄ + ON(h̄2) . (72)

Substituting n = 1 into (72) we get that

αh̄,1 = −(μ − 1)h̄ + ON(h̄2) .

Now we get a recursive formula

αh̄,n = αh̄,n−1 − n(μ − 1)h̄ + ON(h̄2) .

Noticing that (n + 1)ON(h̄2) = ON+1(h̄2) and redefining N �→ N + 1 we conclude that

αh̄,n = −n(n + 1)

2
(μ − 1)h̄ + ON(h̄2) . (73)

STEP 4 (FINALE): Recall that 2n(n + 1) is the eigenvalue of the Laplacian

corresponding to the eigenspace Vn. Let V = ⊕∞
n=0Vn be the space of all finite linear

combinations of spherical harmonics. By norm correspondence (P1) and formula (73),

for every φn ∈ Vn we have

Qh̄(φn) =
(

1 − n(n + 1)

2
(μ − 1)h̄

)
Th̄(φn) + ON(h̄2) ‖φn‖CN

= Th̄(e−th̄
φn) + ON(h̄2) ‖φn‖CN = T(t)
h̄ (φn) + ON(h̄2) ‖φn‖CN

with t = (μ − 1)/4 in Example 3.5.
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Take now any f ∈ C∞(S2), and decompose it by spherical harmonics: f = ∑
n φn.

Since f is smooth, the CN-norms ‖φn‖CN decay faster than any power of n as n → +∞,

so that

‖Qh̄( f ) − T(t)
h̄ ( f )‖op ≤ c

∑
n∈N

nN‖φn‖CN h̄2 ≤ c′h̄2 .

This shows that the quantizations Qh̄ and T(t)
h̄ are equivalent. �

7 The Unsharpness Cocycle Is of Order (1, 1)

In this section, we prove Theorem 3.2.

Proof. For every d ∈ N, we use the standard multi-index notation α = (α1, · · · , αd) ∈ N
d,

where for any sequence of symbols x1, · · · , xd, we write xα := xα1
· · · xαd

, so that in

particular α! := α1! · · · αd! ∈ N, and write |α| := α1 + · · · + αd.

Note that by (11), to show that c+ is a bi-differential operator of bi-degree (1, 1),

we need to show that the differential operator a contains only terms of order 1 and 2.

Note that Th̄(1) = 1l implies c+(1, 1) = 0, so that a cannot contain terms of order 0. Let

us show that a cannot be of order k > 2.

Assume by contradiction that a is of order k > 2. Let x0 ∈ M be the center of

local coordinates (Z1, · · · , Z2n) ∈ U ⊂ R
2n be such that for all f ∈ C∞(M,R),

af (x0) =
∑

1≤|α|≤k

aα

∂ |α|f
∂Zα

(x0) , (74)

where the sequence {aα ∈ R}1≤|α|≤k is such that aβ �= 0 for some β = (β1, · · · , β2n) ∈ N
2n

of length |β| = k. Fix 1 ≤ j ≤ 2n such that βj �= 0, and writing β̂ = (β1, · · · , βj − 1, · · · , β2n)

∈ N
2n−1, take f ∈ C∞(M,R) satisfying

f (Z) = c

β̂!
Zβ̂ + Zj , (75)

for Z ∈ U ⊂ R
2n in the coordinates around x0 ∈ M considered above and for some c ∈ R

to be fixed later. Then this function f and all its derivatives vanish at x0 ∈ M, except for

∂ |β̂|f
∂Zβ̂

(x0) = c and
∂f

∂Zj
(x0) = 1 . (76)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/6/4625/5878286 by Library Life Sci - D
ora G

etm
an user on 18 M

arch 2021



4650 L. Ioos et al.

Then by equations (75) and (74), considering the multi-index γ ∈ N
2n of length |γ | = 2

such that γj = 2, one gets that for any f ∈ C∞(M,R) satisfying (76),

c+( f , f )(x0) = 2aβ

∂ |β̂|f
∂Zβ̂

(x0)
∂f

∂Zj
(x0) + 2aγ

∂f

∂Zj
(x0)

∂f

∂Zj
(x0)

= 2aβc + 2aγ .

(77)

Thus, if f ∈ C∞(M,R) satisfies (77) for c ∈ R such that sign(aβ)c > −aγ /|aβ |, we get that

c+( f , f )(x0) > 0. This contradicts the fact that c+( f , f ) ≤ 0 for all f ∈ C∞(M,R), which

holds for every Berezin–Toeplitz quantization by the semi-positivity property (27). �

8 Discussion and Questions

8.1 Historical remarks on unsharpness

The unsharpness cocycle appeared in earlier literature, which, to the best of our

knowledge, focused on its elimination, of course, by the price of losing the positivity of a

quantization. Let us elaborate on this point. Assume (M, ω) is a quantizable symplectic

manifold equipped with a compatible almost-Kähler structure. Consider the induced

Berezin–Toeplitz quantization of Theorem 3.4. Using the notations of Example 3.5,

define for any f ∈ C∞(M) and h̄ ∈ � = {1/k}k∈N,

Qh̄( f ) := Th̄

(
f + h̄

4

f

)
. (78)

This gives rise to a collection of maps Qh̄ : C∞(M) → L(Hh̄) parametrized by h̄ ∈ � and

satisfying the axioms (P1)–(P4) of Definition 2.6, but which does not preserve positivity,

so that they do not come from a POVM construction via formula (4). Then following the

computation (18) in Example 3.5, we see that the associated unsharpness cocycle cQ+,

defined from the quasi-multiplicativity property (P3) as in the beginning of the section,

satisfies

cQ+( f , g) = 0 , (79)

for all f , g ∈ C∞(M). As noted for instance by Charles in [13, § 1.4] (who uses the

holomorphic Laplacian, which is half the Laplace–Beltrami operator), the quantization

(78) is, up to twisting with a line bundle, the metaplectic Kostant–Souriau quantization,

which possesses remarkable sub-principal properties, a fact that is explained concep-

tually by the vanishing unsharpness property (79).
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In the flat case M = C with the standard symplectic form, Gerstenhaber

considers in [18] deformation quantizations parametrized by λ ≥ 0, which, up to the

2nd order in h̄, correspond to the quantization maps parametrized by h̄ > 0 defined for

any smooth function f : C → R of polynomial growth by

Q(λ)

h̄ ( f ) := Th̄

(
f + 1 − λ

2
h̄
f

)
. (80)

Here Th̄ is the standard Toeplitz quantization of C, sending f to the multiplication by

f followed by the orthogonal L2-projection on the space of holomorphic functions that

are square integrable with respect to a Gaussian measure. Gerstenhaber formulates a

least uncertainty principle for deformation quantization, which implies in particular

that unsharpness vanishes on the classical harmonic oscillator. He then shows that the

quantization (80) satisfies this least uncertainty principle if λ = 1/2, which corresponds

to the flat version of the quantization (78).

Note that in the flat case M = C, the classical harmonic oscillator is a sum

of squares of the coordinate functions. On the other hand, the quasi-multiplicativity

property (P3) implies that for all f ∈ C∞(M) as h̄ → 0,

Th̄( f )2 − Th̄( f 2) = h̄Th̄(c+( f , f )) + O(h̄2) .

We then see that unsharpness measures in particular the deviation of the quantum

harmonic oscillator, defined as a sum of squares of the quantum coordinate operators,

from the quantization of the classical harmonic oscillator. This explains in particular

the standard justification of the metaplectic correction, as giving the “correct” quantum

harmonic oscillator on flat space.

8.2 Least unsharpness surfaces and pseudo-holomorphic curves

Let G be the unsharpness metric associated to a Berezin–Toeplitz quantization of a

closed symplectic manifold (M, ω) (see Section 4). A least unsharpness surface � ⊂ M is

a two-dimensional oriented submanifold with AreaG(�) = ∫
�

ω. Repeating the proof of

Theorem 4.1, we see that for such surfaces, the restriction of the Riemannian area form

coincides with the restriction of the symplectic form. If G has the minimal possible

total unsharpness and hence by Theorem 4.1 (II) comes from some compatible almost-

complex structure J on M, the least unsharpness surfaces in M are J-holomorphic

curves (cf. [34]). For instance, for the complex projective plane M = CP2, Gromov’s theory
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of pseudo-holomorphic curves predicts that for every compatible J, through every two

distinct points A, B ∈ M passes unique such curve � in the homology class of [CP1].

It is enticing to interpret � as a worldsheet of the topological string theory

describing a path joining constant loops A and B. Note that the metric G on our “space-

time” M is canonically associated to a Berezin–Toeplitz quantization of M, and the “total

unsharpness” AreaG(�) of a worldsheet � is nothing else but the Nambu–Goto action up

to a multiplicative constant. If the total unsharpness of (M, G) is minimal possible, that

is, coincides with the symplectic volume of M, the least unsharpness surfaces are J-

holomorphic curves for a compatible almost complex structure J defining G, and hence

represent “worldsheet instantons.” Does there exist an interpretation of this picture in

physical terms?

8.3 On classification of Berezin–Toeplitz quantizations

We conclude the paper with a discussion on classification of Berezin–Toeplitz quan-

tizations up to equivalence in the sense of Definition 6.1. In Section 6, we classified

SU(2)-equivariant quantizations of the two-dimensional sphere. It would be interesting

to extend this to equivariant quantizations for more general co-adjoint orbits equipped

with the canonical symplectic structure. In the general (not necessarily equivariant)

case, the problem is widely open.

In fact, establishing (non)-equivalence of quantizations is a non-trivial problem

even for the Berezin–Toeplitz quantizations described at the end of Section 2, where the

holomorphic line bundles defining the quantization of (M, ω) could be non-isomorphic.

For instance, their Chern classes could differ by torsion even though the associated

spaces of holomorphic sections have same dimension. Are the corresponding quantiza-

tions equivalent?

Another interesting example is as follows. According to Remark 4.2, there

exist metrics G on M admitting different decompositions of the form (21). Each such

decomposition determines a Berezin–Toeplitz quantization given by almost-Kähler

quantization followed by diffusion, as explained in the proof of Theorem 4.1 (III). Are the

quantizations corresponding to different decompositions of the same metric equivalent?

Let us address the question about invariants of quantizations with respect to

equivalence. In addition to the unsharpness metric, there is another invariant coming

from the trace correspondence, see item (P4) in Definition 2.6. Recall that the latter

states that

tr(Th̄( f )) = (2π h̄)−d
∫

M
f Rh̄ dμ ,
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where dim M = 2d, the function Rh̄ ∈ C∞(M) satisfies Rh̄ = 1 + O(h̄), and dμ = ωd

d!

is the symplectic volume on M. Roughly speaking, since the trace is invariant under

conjugation, the convergence rate of the sequence of differential forms Rh̄dμ to the

symplectic volume dμ as h̄ → 0 does not change up to O(h̄2) under equivalence. For the

sake of simplicity, let us, until the end of the paper, enhance axiom (P4) by assuming

that there exists a function r ∈ C∞(M) such that

Rh̄ = 1 + h̄ r + O(h̄2) .

We shall refer to the form rdμ as the Rawnsley form. Thus, equivalent quantizations

possess the same Rawnsley form. Put

〈r〉 := Vol(M)−1
∫

M
rdμ .

Remark 8.1. Substituting f = 1 into (P4), we get that 〈r〉 appears in the dimension

formula

dim Hh̄ = Vol(M)(2π h̄)−d
(
1 + h̄ 〈r〉 + O(h̄2)

)
.

Let us mention that for Kähler quantizations, an alternative asymptotic expression for

the dimension of Hh̄ is given by the Hirzebruch–Riemann–Roch theorem. Comparing

coefficients at h̄, one gets a simple topological interpretation of 〈r〉:

〈r〉 = 2π

〈
[ω]d−1 ∪ c1(TM), [M]

〉
2(d − 1)! Vol(M)

,

where c1(TM) stands for the 1st Chern class of M.

Example 8.2. Let v be a vector field on the manifold M generating a flow φt. Given a

Berezin–Toeplitz quantization Th̄ on M, define a new quantization by setting T(v)

h̄ ( f ) :=
Th̄( f ◦φ−h̄). A direct calculation based on the expansion T(v)

h̄ ( f ) = Th̄ ( f − h̄ df (v))+O(h̄2)

shows that this is a Berezin–Toeplitz quantization whose unsharpness metric coincides

with the one of Th̄, and whose Rawnsley form is given by (r + div(v))dμ, where div(v)

stands for the divergence of v with respect to the symplectic volume. In particular,

it follows that by choosing an appropriate vector field v, one can always achieve the

Rawnsley form being equal to 〈r〉dμ.
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Question 8.3. Consider a pair of quantizations with the Hilbert spaces of

the same dimension. Suppose that their unsharpness metrics and the Rawnsley forms

coincide. Are these quantizations equivalent?

The answer in the general (not necessarily equivariant) case is at the moment

unclear.

We refer to [24] for a discussion on equivalence of quantizations up to conju-

gation and an error of the order O(h̄). It turns out that all (not necessarily positive)

quantizations of the sphere and the torus in dimension 2 are equivalent in this weaker

sense.
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