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Abstract
We use the theory of Berezin–Toeplitz operators of Ma and Marinescu to study the
quantum Hamiltonian dynamics associated with classical Hamiltonian flows over
closed prequantized symplectic manifolds in the context of geometric quantization of
Kostant and Souriau. We express the associated evolution operators via parallel trans-
port in the quantum spaces over the induced path of almost complex structures, and
we establish various semi-classical estimates. In particular, we establish a Gutzwiller
trace formula for the Kostant–Souriau operator and compute explicitly the leading
term. We then describe a potential application to contact topology.

Keywords Geometric quantization · Berezin-Toeplitz operators · Hamiltonian flows ·
Gutzwiller trace formula · Contact topology
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1 Introduction

Given a classical phase space X , the goal of quantization is to produce a Hilbert space
H of quantum states, such that the classical dynamics over X , described as flows of
diffeomorphisms, are mapped in a natural way to the associated quantum dynamics of
H , described as 1-parameter families of unitary operators. In the context of geometric
quantization, introduced independently by Kostant [23] and Souriau [34], the classical
phase space is represented by a 2n-dimensional symplectic manifold (X , ω) without
boundary, endowed with a Hermitian line bundle (L, hL) together with a Hermitian
connection ∇L with curvature RL satisfying the following prequantization condition,
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ω =
√−1

2π
RL . (1.1)

The construction of an associated Hilbert space of quantum states depends on the
extra data of a polarization, and the best choice of such a polarization usually
depends on the physical situation at hand. In particular, the classical dynamics of
a symplectic manifold (X , ω) is entirely determined by a time-dependent Hamilto-
nian F ∈ C∞(R × X , R), and the corresponding quantum dynamics are sometimes
much easier to infer for one specific choice of polarization. For the general theory
as well as numerous examples, we refer to the classical book of Woodhouse [35,
Chap.5,Chap. 9].

In this paper, we focus our attention on compact symplecticmanifolds, and consider
the polarization induced by an almost complex structure J ∈ End(T X) compatible
with ω, which always exists. The associated Hilbert spaceHp of quantum states will
depend of an integer p ∈ N, representing a quantum number, and the goal of this
paper is to study the behavior of the quantum dynamics associated with the classical
Hamiltonian flow of F ∈ C∞(R × X , R) as p tends to infinity. This limit is called
the semi-classical limit, when the scale gets so large that we recover the laws of
classical mechanics as an approximation of the laws of quantummechanics. We show,
in particular, that the quantum dynamics approximate the corresponding classical
dynamics as p → +∞.

The construction we present in this paper holds for any compact prequantized
symplectic manifold and coincides with the holomorphic quantization of Kostant and
Souriau in the particular case when the almost complex structure J ∈ End(T X) is
integrable, making (X , J , ω) into a Kähler manifold. Then (L, hL) admits a natural
holomorphic structure for which ∇L is its Chern connection, and the space Hp of
quantum states coincides with the associated space of holomorphic sections of the
pth tensor power L p := L⊗p, for all p ∈ N big enough. The natural L2-Hermitian
product (2.3) on the space C∞(X , L p) of smooth sections of L p then gives Hp the
structure of a Hilbert space. In the very restrictive case when the Hamiltonian flow
acts by biholomorphisms on (X , L), the quantum dynamics is simply given by the
induced action on the space of holomorphic sections Hp for all p ∈ N. In contrast,
our results apply to the holomorphic quantization of general Hamiltonian flows.

In Sect. 2, we consider a general almost complex structure J ∈ End(T X) compat-
ible with ω, and for all p ∈ N, we define in (2.17) the spaceHp of quantum states as
the direct sum of eigenspaces associated with the small eigenvalues of the following
renormalized Bochner Laplacian

�p := �L p − 2πnp , (1.2)

acting on the smooth sections C∞(X , L p) of L p, where �L p
is the usual Bochner

Laplacian of (L p, hL
p
) associated with the Riemannian metric gT X := ω(·, J ·). This

follows an idea of Guillemin and Uribe [17], and we consider here a more general
construction due to Ma and Marinescu [27], where L p is replaced by E ⊗ L p for
all p ∈ N, for any Hermitian vector bundle with connection (E, hE ,∇E ). Note that
both constructions admit an extension to the case of a general J -invariant metric
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gT X , and the general construction of [27] also deals with the case when one adds
a potential term to �p. In Theorems 2.5 and 2.6, we describe the results of [21]
on the dependence of the quantization to the choice of an almost complex structure
J ∈ End(T X) at the semi-classical limit p → +∞. Specifically, we introduce the
parallel transport operator Tp,t between different quantum spaces Hp along a path
{Jt ∈ End(T X)}t∈R of almost complex structures with respect to the L2-connection
(2.17), and we describe in Theorem 2.5 how Tp,t behaves like a Toeplitz operator as
p → +∞, giving an explicit formula for the highest order coefficient. This is based
on the theory of Berezin–Toeplitz operators for symplectic manifolds developed by
Ma and Marinescu in [28], and extended to this context in [22].

In Sect. 3, we show how one can use this parallel transport to construct the quan-
tum Hamiltonian dynamics associated with any F ∈ C∞(R × X , R). In fact, the
corresponding Hamiltonian flow ϕt : X → X defined by (3.2) for all t ∈ R does not
preserves any almost complex structure in general, and thus does not induce an action
on Hp for any p ∈ N. Instead, fix an almost complex structure J0 ∈ End(T X) com-
patible with ω, and consider the almost complex structure Jt := dϕt J0 dϕ−1

t , as well
as the spacesHp,t of quantum states associated with Jt , for all t ∈ R and p ∈ N. This
flow, together with its lift to L defined by (3.4), induces a unitary isomorphism ϕ∗

t,p :
Hp,t → Hp,0 by pullback on C∞(X , L p), and considering the parallel transport
Tp,t : Hp,0 → Hp,t along the path s 	→ Js for s ∈ [0, t], the associated quantum evo-
lution operator at time t ∈ R is given by the unitary operator ϕ∗

t,pTp,t ∈ End(Hp,0).
In the rest of the Introduction, we assume that the Hamiltonian F =: f ∈

C∞(X , R) does not depend on time, and write ξ f ∈ C∞(X , T X) for the Hamil-
tonian vector field of f , as defined in (3.1). In that case, we show in Lemma 3.1 that

ϕ∗
t,pTp,t = exp(−2π

√−1tpQ p( f )), (1.3)

for all t ∈ R and p ∈ N, where Qp( f ) is the Kostant–Souriau operator associated
with f , defined as an operator acting on C∞(X , L p) by the formula

Qp( f ) := Pp

(
f −

√−1

2π p
∇L p

ξ f

)
Pp, (1.4)

where f is the operator of pointwise multiplication by f and Pp : C∞(X , L p) →
Hp,0 is the L2-orthogonal projection. This is the holomorphic version of the Blattner–
Kostant–Sternberg kernel, as described for example in [35, §9.7]. Under this form, it
was first noticed by Foth and Uribe in [16, §3.2], who interpreted the trace of Qp( f )
as a moment map for the group of Hamiltonian diffeomorphisms acting on the space
of almost complex structures compatible withω. Using the results described in Sect. 2,
we establish the following semi-classical estimate on its Schwartz kernel (2.26), where
τt,p denotes the parallel transport in L p along s 	→ ϕs(x) for s ∈ [0, t]. Here and in
all the paper, we use the notation O(p−k) in the sense of the corresponding Hermitian
norm as p → +∞, and O(p−∞) means O(p−k) for all k ∈ N.

Proposition 1.1 For any t ∈ R and x, y ∈ X such that ϕt (y) 
= x, we have the
following estimate as p → +∞,
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1588 L. Ioos

exp
(
2π

√−1tpQ p( f )
)

(x, y) = O(p−∞). (1.5)

Furthermore, there exists ar (t, x) ∈ C (r ∈ N) smooth in x ∈ X and t ∈ R, such that
for any k ∈ N

∗, as p → +∞ we have

exp
(
2π

√−1tpQ p( f )
)

(ϕt (x), x)

= pne2π
√−1tp f (x)

(
k−1∑
r=0

p−r ar (t, x) + O(p−k)

)
τt,p, (1.6)

with a0(t, x) 
= 0 for all t ∈ R and x ∈ X.

This follows from the more precise Proposition 3.3, which gives, in particular, a
formula for the first coefficient a0(t, x). As explained there, this result shows that the
quantum dynamics approximates the classical dynamics at the semi-classical limit
p → +∞ in a precise sense. In Theorem 3.4, we also use the results described in
Sect. 2 to give an associated semi-classical trace formula. Note that the estimate (1.5)
is not uniform in (t ∈ R, x, y ∈ X), and the estimate (1.6) shows that there is in fact
a jump when ϕt (y) tends to x .

In Sect. 4, we consider a time-independent Hamiltonian f ∈ C∞(X , R), and we
use the setting of Sect. 2 to study the operators ĝ(pQp( f − c)) ∈ End(Hp) defined
for all p ∈ N by the formula

ĝ(pQp( f − c)) :=
∫
R

g(t)e2π
√−1tpc

(
ϕ∗
t,pTp,t

)
dt, (1.7)

where g : R → R is smooth with compact support, where c ∈ R is a regular value of
f and where ϕ∗

t,pTp,t ∈ End(Hp,0) is the quantum evolution operator associated with
f . Via the interpretation (1.3) in terms of quantum evolution operators, theGutzwiller
trace formula predicts a semi-classical estimate for the trace Tr[ĝ(pQp( f − c))] as
p → +∞, in terms of the periodic orbits of the Hamiltonian flow of f included in
the level set f −1(c). This formula was first worked out by Gutzwiller in [19, (36)] for
usual Schrödinger operators over R

n as the Planck constant � tends to 0, using path
integral methods. As explained in his book [20], this formula plays a fundamental role
in the theory of quantum chaos, which studies the quantization of chaotic classical
systems.

Specifically, let Supp g ⊂ R be the support of g, and suppose that for all t ∈ Supp g,
the fixed point set Xϕt ⊂ X of ϕt : X → X is non-degenerate over a neighborhood
of f −1(c) in the sense of Definition 2.7 and intersects f −1(c) transversally such that
Xϕt ∩ f −1(c) is non-empty only for a finite subset T ⊂ Supp g. Let {Y j }1� j�m be
the set of connected components of

∐
t∈T

Xϕt ∩ f −1(c), (1.8)

and for any 1 � j � m, write t j ∈ T for the time such that Y j ⊂ Xϕt j ∩ f −1(c).
In particular, these hypotheses are automatically satisfied if Supp g ⊂ R is a small
enough neighborhood of 0, so that T = {0} and Xϕ0 = X .
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Letλ j ∈ R be the action of f overY j as inDefinition 3.5, and let Volω( f −1(c)) > 0
be the volume of f −1(c) with respect to the natural Liouville measure (4.20) induced
by ω and f on f −1(c).

Theorem 1.2 Under the above assumptions, there exists b j,r ∈ C (r ∈ N), depending
only on geometric data around Y j for all 1 � j � m, such that for any k ∈ N

∗ and
as p → +∞, we have

Tr
[
ĝ(pQp( f − c))

] =
m∑
j=1

p(dim Y j−1)/2g(t j )e
−2π

√−1pλ j

(
k−1∑
r=0

p−r b j,r + O(p−k)

)
.

(1.9)

Furthermore, there is an explicit geometric formula for the first coefficients b j,0 for
all 1 � j � m, and as p → +∞ we have

Tr
[
ĝ(pQp( f − c))

] = pn−1g(0)Volω( f −1(c)) + O(pn−2). (1.10)

Note that formula (1.9) does not follow from (1.3) andProposition 1.1 by integrating
over t ∈ R, due to the jump in the estimates (3.25) and (1.6) when ϕt (y) tends to x .
This is illustrated by Proposition 4.1, where it is shown how ĝ(pQp( f − c)) localizes
around f −1(c) after integrating in t ∈ R via stationary phase estimates, with a precise
control on the constant around f −1(c).

The general formula for the first coefficients b j,0 of the expansion (1.9) is given
in Theorem 4.3, and reduces to the so-called Weyl term (1.10) of the trace formula
in the case 0 ∈ Supp g. However, the relevance of this formula for quantum chaos
mainly lies in the terms associated with isolated periodic orbits, and one would like
to consider general situations where this formula exhibits natural geometric quantities
associated with such orbits.

To describe such situations, let us first consider the general case of a Hermitian
vector bundle with connection (E, hE ,∇E ) over R × X . Writing Et for its restriction
to X over t ∈ R, we take more generally the quantum spaces Hp,t to be the almost
holomorphic sections of Et⊗L p with respect to Jt , for all p ∈ N, togetherwith the L2-
Hermitian product induced by hEt and hL

p
. Following Definition 2.4, we can again

consider the parallel transport Tp,t : Hp,0 → Hp,t with respect to the associated
L2-connection, and if ϕt : X → X is a Hamiltonian flow lifting to a bundle map
ϕE
t : E0 → Et over X for all t ∈ R, we again have a unitary evolution operator

ϕ∗
t,pTp,t ∈ End(Hp,0). Then the right-hand side of formula (1.7) still makes sense,

and Theorem 4.3 gives the general version of Theorem 1.2 in this context.
Consider now the canonical line bundle (KX , hKX ,∇KX ) over R × X associated

with {Jt ∈ End(T X)}t∈R defined in Sect. 2 by the formula (2.14), and assume that
(X , ω) admits ametaplectic structure, so that this canonical line bundle admits a square
root K 1/2

X over R × X with induced metric and connection, called the metaplectic
correction. Then ϕt admits a natural lift for all t ∈ R, and we call the associated
unitary operator ϕ∗

t,pTp,t as above the metaplectic quantum evolution operator.
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1590 L. Ioos

Theorem 1.3 Assume that (X , ω) admits a metaplectic structure, and consider the
assumptions of Theorem 1.2. Let 1 � j � m be such that dim Y j = 1 and such that
[Jξ f , ξ f ] = 0 over Y j . Then the first coefficients of the analogous expansion (1.9)
as p → +∞ for the metaplectic quantum evolution operator satisfy the following
formula,

b j,0 = (−1)
n−1
2

t(Y j )

| detNx (IdN − dϕt j |N )|1/2 , (1.11)

for a natural choice of square root and for any x ∈ Y j , where N is the normal bundle
of Y j inside T f −1(c) and where t(Y j ) > 0 is the primitive period of Y j as a periodic
orbit of the flow t 	→ ϕt inside f −1(c).

For (X , Jt , ω) Kähler for all t ∈ R and endowed with a metaplectic structure, one
can show using [21, (5.2)] that the generator of the metaplectic quantum evolution
operator considered above coincides with the metaplectic Kostant–Souriau operator
considered by Charles in [12, Th.1.5].

Theorem 1.3 follows from Theorem 4.4, which gives also a formula for general
(E, hE ,∇E ) as an integral along the associated periodic orbit. In the case of usual
Schrödinger operators over a compact Riemannian manifold the Gutzwiller trace for-
mula has been established by Guillemin and Uribe [18, Th.2.8], Paul and Uribe [32,
Th.5.3] and Meinrenken [30, Th.3], while in the case of Toeplitz operators over the
smooth boundary of a compact strictly pseudoconvex domain, it has been established
by Boutet de Monvel and Guillemin [9, Th,9,Th.10]. In the case of Berezin–Toeplitz
operators over a compact prequantized Kähler manifold with metaplectic structure,
instead of Kostant–Souriau operators over a general compact prequantized symplectic
manifold as in Theorem 1.2, it has been established by Borthwick, Paul and Uribe [8,
Th.4.2] using the theory of Boutet de Monvel and Guillemin [9].

In all the works cited above, the corresponding formulas for the first coefficients
involve an undetermined subprincipal symbol term with no obvious geometric inter-
pretation. In contrast, the general formula for the first coefficient given in (4.22) is
completely explicit in terms of local geometric data. Furthermore, the formula for iso-
lated periodic orbits given in Theorem 1.3 is the same as the corresponding formulas
in all the cases mentioned above, but without the undetermined subprincipal symbol
term. This makes it much simpler to use in practical applications.

In fact, let the Hamiltonian f ∈ C∞(X , R) and the almost complex structure
J ∈ End(T X) be such that

dιJξ f ω = ω over f −1(I ), (1.12)

for some interval I ⊂ R of regular values of f containing c ∈ R. As explained at
the end of Sect. 4, this induces a contact form α ∈ �1(�, R) on � := f −1(c), and
ξ f generates the Reeb flow of (�, α). Then Proposition 4.5 shows how Theorem 1.2
can be used to detect the periods of the non-degenerate isolated periodic orbits of this
flow, and Theorem 1.3 allows in principle to compute the associated action. This is
of particular interest in contact topology, where the study of non-degenerate isolated
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periodic orbits of the Reeb flow is a major topic, usually tackled via methods of Floer
homology. Note that to recover the action from the expansion (1.9) in practice, one
needs a completely explicit formula for the first coefficient, and formula (1.11) is the
best that one can hope for.

In Theorem 4.2, we also establish semi-classical estimates on the Schwartz kernel
of the operator ĝ(pQp( f − c)) as p → +∞, analogous to the corresponding esti-
mates in [8, Th.1.1] for Berezin–Toeplitz operators over compact prequantized Kähler
manifolds admitting ametaplectic structure. Once again, our formula for the first order
term is completely explicit in terms of geometric data, without the undetermined sub-
principal symbol term appearing in the corresponding formula in [8, Th.2.7].

In the case of compact prequantized Kähler manifolds and when the Hamiltonian
flow ϕt : X → X acts by biholomorphisms, so that one can define the quantization of
ϕt simply by its induced action on holomorphic sections, the pointwise semi-classical
estimates of Theorem 4.2 for E = C have been obtained by Paoletti in [31, Th.1.2]. In
this case, the general version of Theorem 1.2 is a direct consequence of the following
Kirillov formula,

Tr
[
ϕ∗
t j+t,p

]
=
∫
X

ϕt j
Td

ϕ−1
t j

,−tξ f
(T X) ch

ϕ−1
t j

,−tξ f
(L p), (1.13)

as described in [6, (2.38)] for any fixed 1 � j � m and |t | > 0 small enough, using
the stationary phase lemma as p → +∞. Paoletti recovers this special case in [31,
Th.1.3] without using formula (1.13).

The theory of Berezin–Toeplitz operators over compact prequantized Kähler mani-
folds with E = C was first developed by Bordemann, Meinreken and Schlichenmaier
[7] and Schlichenmaier [33]. Their approach is based on the work of Boutet deMonvel
and Sjöstrand on the Szegö kernel in [10], and the theory of Toeplitz structures devel-
oped by Boutet de Monvel and Guillemin in [9]. The present paper is based instead on
the approach of Ma and Marinescu using Bergman kernels, and we refer to the book
[26] for a detailed presentation of this method.

The quantization of symplectic maps over compact prequantized Kähler manifolds
has first been considered by Zelditch in [36], using a unitary version of the theory of
Toeplitz structures of [9], and Zelditch and Zhou use it in [37, Th.0.9] to establish the
pointwise semi-classical estimates of Theorem 4.2 in the Kähler case for E = C. Note
that Theorem 1.2 is not a consequence of these pointwise semi-classical estimates, as
they are not uniform in x ∈ X . The applications of parallel transport to the quantum
dynamics associated with Hamiltonian flows have also been explored by Charles
[13, Th.5.3] in the case of compact prequantized Kähler manifolds with metaplectic
structure, where he establishes an analogue of Proposition 1.1 in the language of
Fourier integral operators.

2 Setting

Let (X , ω) be a compact symplectic manifold without boundary of dimension 2n, and
let (L, hL) be a Hermitian line bundle over X , endowed with a Hermitian connection
∇L satisfying the prequantization condition (1.1). Let J be an almost complex structure
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on T X compatible with ω, and let gT X be the Riemmanian metric on X defined by

gT X (·, ·) := ω(·, J ·). (2.1)

We write ∇T X for the associated Levi–Civita connection on T X , and dvX for the
Riemannian volume form of (X , gT X ). It satisfies the Liouville formula dvX = ωn/n!.

For any Hermitian vector bundle with connection (E, hE ,∇E ) over X , we write
〈·, ·〉E and | · |E for the Hermitian product and norm induced by hE , and write RE

for the curvature of ∇E . We denote by C the trivial line bundle with trivial Hermitian
metric and connection. For any p ∈ N, we write L p for the pth tensor power of L ,
and for any Hermitian vector bundle with connection (E, hE ,∇E ), we set

Ep := L p ⊗ E, (2.2)

equipped with the Hermitian metric hEp and connection ∇Ep induced by hL , hE and
∇L , ∇E . The L2-Hermitian product 〈·, ·〉p on C∞(X , Ep) is given for any s1, s2 ∈
C∞(X , Ep) by the formula

〈s1, s2〉p :=
∫
X
〈s1(x), s2(x)〉Ep dvX (x). (2.3)

Let L2(X , Ep) be the completion of C∞(X , Ep) with respect to 〈·, ·〉p.
Definition 2.1 For any p ∈ N, the Bochner Laplacian �Ep of (Ep, hEp ,∇Ep ) is the
second-order differential operator acting on C∞(X , Ep) by the formula

�Ep := −
2n∑
j=1

[
(∇Ep

e j )2 − ∇Ep

∇T X
e j

e j

]
, (2.4)

where {e j }2nj=1 is any local orthonormal frame of (T X , gT X ).

This defines an unbounded self-adjoint elliptic operator on L2(X , Ep), and by
standard elliptic theory, its spectrum Spec(�Ep ) is discrete and contained in R.

Definition 2.2 For any p ∈ N, the renormalized Bochner Laplacian �p is the second-
order differential operator acting on C∞(X , Ep) by the formula

�p := �Ep − 2πnp −
n∑
j=1

RE (w j , w̄ j ), (2.5)

where {w j }nj=1 is an orthonormal basis of T (1,0)X for the Hermitian metric induced

by gT X .

As above, �p is an unbounded self-adjoint elliptic operator on L2(X , Ep), and
has discrete spectrum Spec(�p) contained in R. Furthermore, we have the following
refinement of [17, Th.2.a].
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Theorem 2.3 [25, Cor. 1.2] There exist constants C̃, C > 0 such that for all p ∈ N,

Spec(�p) ⊂ [−C̃, C̃ ] ∪ ]4πnp − C,+∞[, (2.6)

and the constants C̃, C > 0 are uniform in the choice of J ∈ End(T X) varying
smoothly in a compact set of parameters. Furthermore, the direct sum

Hp :=
⊕

λ∈[−C̃,C̃ ]
Ker(λ − �p) (2.7)

is naturally included in C∞(X , Ep), and there is p0 ∈ N such that for any p � p0,
we have

dimHp =
∫
X
Td(T (1,0)X) ch(E) exp(pω), (2.8)

where Td(T (1,0)X) represents the Todd class of T (1,0)X and ch(E) represents the
Chern character of E. The integer p0 ∈ N is uniform in the choice of J ∈ End(T X)

varying smoothly in a compact set of parameters.

For any p ∈ N, the Hilbert space Hp ⊂ L2(X , Ep) defined by (2.7) is called
the space of almost holomorphic sections of Ep. In the special case when J is inte-
grable, so that (X , J , ω, gT X ) is a Kähler manifold and the Hermitian bundles (L, hL)

and (E, hE ) admit natural holomorphic structures such that ∇L and ∇E are their
Chern connections, then the subspace Hp ⊂ C∞(X , L p) coincides with the space
of holomorphic sections of Ep for all p � p0. In fact, as explained for example in
[26, §1.4.3, §1.5], by the Bochner–Kodaira formula, the formula (2.5) is twice the
Kodaira Laplacian of Ep, and there is a spectral gap, so that C̃ = 0 in (2.6). It is then
a basic fact of Hodge theory that the kernel of the Kodaira Laplacian in C∞(X , Ep)

is precisely the space of holomorphic sections of Ep, for all p ∈ N.
The goal of this section is to describe the results of [21] about the dependence of

this quantization scheme on the choice of an almost complex structure J ∈ End(T X).
To this end, we consider a smooth path

t 	−→ Jt ∈ End(T X), for all t ∈ R, (2.9)

of almost complex structures over X compatible with ω. We will see {Jt ∈
End(T X)}t∈R as the endomorphism of the vertical tangent bundle T X over R × X of
the tautological fibration

π : R × X −→ R

(t, x) 	−→ t, (2.10)

restricting to Jt ∈ End(T X) over t ∈ R. We then have an induced vertical Riemannian
metric on T X over R × X , defined by its restriction on the fiber X over any t ∈ R via
the formula
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1594 L. Ioos

gT X
t (·, ·) := ω(·, Jt ·). (2.11)

Following Bismut in [3, Def. 1.6] and in [4, (1.2)], we consider the induced vertical
Levi–Civita connection ∇T X on the subbundle T X of the tangent bundle of R × X ,
defined by the formula

∇T X := T X∇R⊕T XT X , (2.12)

where ∇R⊕T X is the Levi–Civita connection on the total space of R × X for the
Riemannian metric defined on T (R × X) = R ⊕ T X as the orthogonal sum of the
canonical metric of (R) and the metric (gT X

t ) over (t ∈ R), with T X : R ⊕ T X →
T X the canonical projection. Note that by the Liouville formula dvX = ωn/n!, the
Riemannian volume form dvX of (X , gT X

t ) does not depend on t ∈ R.
Let T XC := T X ⊗R C be the complexification of the vertical tangent bundle T X

over R× X . The family of complex structures {Jt ∈ End(T X)}t∈R induces a splitting

T XC = T (1,0)X ⊕ T (0,1)X (2.13)

into the eigenspaces of Jt corresponding to the eigenvalues
√−1 and −√−1 over

{t} × X for all t ∈ R. We endow T XC with the Hermitian product hT X given by
gT X
t (·, ·̄) over {t} × X for all t ∈ R. The canonical line bundle associated with

{Jt ∈ End(T X)}t∈R is the line bundle

KX := det(T (1,0)∗X) (2.14)

over R× X equipped with the Hermitian metric hKX and connection ∇KX induced by
the vertical Hermitian metric hT X and the vertical Levi–Civita connection (2.12) via
the splitting (2.13).

For any Hermitian vector bundle with connection (E, hE ,∇E ) over R × X , we
write (Et , hEt ,∇Et ) for the Hermitian vector bundle with connection induced on X
by restriction to the fiber over t ∈ R. For all t ∈ R, we write

τ E
t : E0 −→ Et (2.15)

for the bundle isomorphism over X induced by parallel transport in E with respect
to ∇E along horizontal directions of π : R × X → R. We still write (L, hL ,∇L)

for the Hermitian line bundle with connection over R × X defined by pullback of
(L, hL ,∇L) over X via the second projection, and write (Ep, hEp ,∇Ep ) for the tensor
product Ep = E ⊗ L p over R× X for any p ∈ N, with induced Hermitian metric and
connection. For any p ∈ N and t ∈ R, we write �p,t for the renormalized Bochner
Laplacian acting on C∞(X , Ep,t ) associated with the metric gT X

t as in Definition 2.2,
and write Hp,t ⊂ C∞(X , Ep,t ) for the associated space of almost holomorphic
sections defined in Theorem 2.3.

Let us assume that there exists p0 ∈ N such that the two intervals in (2.6) are
disjoint and such thatHp,t satisfies the Riemann–Roch–Hirzebruch formula (2.8) for
all p � p0 and t ∈ R. By Theorem 2.3, such a p0 ∈ N always exists if we ask Jt and
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(Et , hEt ,∇Et ) to be independent of t ∈ R outside a compact set of R. On the other
hand, this assumption will be automatically satisfied for all t ∈ R in the main case of
interest considered in Sect. 3. In the sequel, we fix such a p0 ∈ N.

Following for instance [2, §9.2], for all t ∈ R and p � p0, we define the orthogonal
projection operator Pp,t : L2(X , Ep,t ) → Hp,t with respect to the associated L2-
Hermitian product (2.3) by the following contour integral in the complex plane,

Pp,t :=
∫

�

(
λ − �p,t

)−1 dλ, (2.16)

where � ⊂ C is a circle of center 0 and radius a > 0 satisfying C̃ < a < 4π p − C .
This shows that the projection operators Pp,t depend smoothly on t ∈ R, and as the
dimension of Im(Pp,t ) = Hp,t is constant in t ∈ R by assumption, this defines a
finite dimensional bundle over R, which can be seen as a subbundle of the infinite
dimensional vector bundle with fiber C∞(X , Ep,t ) over t ∈ R.

Definition 2.4 For any p � p0, the quantum bundle (Hp, hHp ,∇Hp ) is the bundle
of almost holomorphic sections over R � {Jt ∈ End(T X)}t∈R defined via (2.16) as
above, endowed with the L2-Hermitian structure hHp induced by the L2-Hermitian
product of L2(X , Ep,t ) for all t ∈ R, and with the L2-Hermitian connection ∇Hp ,
defined on the canonical vector field ∂t of R via its action on the total space C∞(R ×
X , Ep) by the formula

∇Hp
∂t

:= Pp,t∇Ep
∂t

Pp,t , (2.17)

for all t ∈ R. By convention, we set Hp = {0} for all p < p0.

By an argument of [5, Th.1.14], the L2-connection ∇Hp preserves the L2-
Hermitian product hHp . For any p ∈ N and t ∈ R, let L (Hp,0,Hp,t ) be the space
of linear operators from Hp,0 to Hp,t , and write ‖ · ‖p,0,t for the operator norm of
L (Hp,0,Hp,t ) induced by hHp . We consider the parallel transport

Tp,t ∈ L (Hp,0,Hp,t ) (2.18)

in the quantum bundle Hp over R with respect to ∇Hp . Recall that τ E
t : E0 → Et

has been defined by (2.15). The following Theorem shows that the parallel transport
has the semi-classical behavior of a Toeplitz operator as p → +∞.

Theorem 2.5 [21, Th.3.16] There exists a sequence {μl,t ∈ C∞(X , Ep,t ⊗E∗
p,0)}l∈N,

smooth in t ∈ R, such that for all k ∈ N
∗, there exists Ck > 0 such that

∥∥∥Tp,t −
k−1∑
l=0

p−l Pp,tμl,t Pp,0

∥∥∥
p,0,t

� Ck p
−k, (2.19)

for all p ∈ N and t ∈ R. Furthermore, there is a natural function μt ∈ C∞(X , C)

such that the first coefficient μ0,t satisfies

μ0,t = μtτ
E
t . (2.20)
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To describe the function μt ∈ C∞(X , C) of (2.20), let us describe the local setting
involved in the proof of the above theorem in [21]. For any t ∈ R, using the fact that
the almost complex structures J0 ∈ End(T X) and Jt ∈ End(T X) are both compatible
with the same symplectic form ω, we get a splitting

T XC = T (1,0)X0 ⊕ T (0,1)Xt (2.21)

into the holomorphic subspace T (1,0)X0 of T XC associated to J0 ∈ End(T X) and
the anti-holomorphic subspace T (0,1)Xt of T XC associated with Jt ∈ End(T X) as in
(2.13). We write

t
0 ∈ End(T XC) (2.22)

for the projection operator onto T (1,0)X0 with kernel T (0,1)Xt . In a dual way, we

write
0
t ∈ End(T XC) for the projection operator onto T (0,1)Xt with kernel T (1,0)X0.

Considering its restriction to T (0,1)X0 and via the isomorphism T (0,1)Xt � T (1,0)∗Xt

induced by gT X
t for all t ∈ R, it induces an isomorphism

det(
0
t ) : KX ,0 −→ KX ,t (2.23)

of the respective canonical line bundles over X . Recall the connection ∇KX on the
canonical line bundle KX over R × X of (2.14), inducing τ

KX
t : KX ,0 → KX ,t by

(2.15). Then by [21, (5.4)], the function μt ∈ C∞(X , C) of (2.20) satisfies

μ̄2
t (x) = det(

0
t )

−1τ
KX
t , (2.24)

for all t ∈ R, via the canonical identification KX ,0 ⊗ K ∗
X ,0 � C.

The main tool of the proof of Theorem 2.5 in [21] is the local study of the Schwartz
kernel with respect to dvX of the parallel transport operator. For any linear operator
Kp,t ∈ L (Hp,0,Hp,t ), writeKp,t (·, ·) ∈ C∞(X×X , Ep,t �E∗

p,0) for the Schwartz
kernel with respect to dvX of the bounded operator

Kp,t := Pp,tKp,t Pp,0 : L2(X , Ep,0) −→ L2(X , Ep,t ), (2.25)

defined for any s ∈ C∞(X , Ep,0) and x ∈ X by the formula

Kp,t s (x) =
∫
X
Kp,t (x, y)s(y) dvX (y). (2.26)

The existence of a smooth Schwartz kernel is an immediate consequence of the fact that
the image of (2.25) is finite dimensional. In the case t = 0, so thatKp,0 ∈ End(Hp,0)

andKp,0(x, x) ∈ End(Ep,0)x for all x ∈ X , we have the following basic trace formula,

Tr[Kp,0] =
∫
X
Tr
[
Kp,0(x, x)

]
dvX (x). (2.27)
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Fix ε > 0 and consider a collection of diffeomorphisms

BTx0 X (0, ε)
∼−−→ Vx0 ⊂ X , (2.28)

varying smoothly with x0 ∈ X , sending 0 to x0 ∈ X and with differential at 0
inducing the identity of Tx0X . For any x0 ∈ X and t ∈ R, we pullback (L, hL ,∇L)

and (Et , hEt ,∇Et ) over Vx0 in this chart, and identify them with their central fiber
Lx0 and Et,x0 by parallel transport along radial lines of B

Tx0 X (0, ε). We then identify
Lx0 with C by the choice of a unit vector. For any Kp,t ∈ L (Hp,0,Hp,t ), we write
Kp,t,x0(·, ·) for the image in this trivialization of its Schwartz kernel over Vx0 × Vx0 .
Then Kp,t,x0(·, ·) can be seen as the evaluation at x0 ∈ X of the pullback of Et ⊗ E∗

0
over the fibered product BT X (0, ε) ×X BT X (0, ε) over X , and for any m ∈ N, let
| · |C m (X) be a local C m-norm on this bundle induced by derivation with respect to
x0 ∈ X .

For any Z , Z ′ ∈ Tx0X and t ∈ R, we use the following local model

Tt,x0(Z , Z ′) := exp
(
−π

[〈
t

0(Z − Z ′), (Z − Z ′)
〉+ √−1ω(Z , Z ′)

])
, (2.29)

where 〈·, ·〉 is the scalar product on Tx0X induced by the metric gT X
0 defined by (2.11).

For any Ft,x0(Z , Z ′) ∈ Et ⊗ E∗
0 polynomial in Z , Z ′ ∈ Tx0X , we write

FTt,x0(Z , Z ′) := Ft,x0(Z , Z ′)Tt,x0(Z , Z ′) ∈ Et ⊗ E∗
0 . (2.30)

For any function h ∈ C∞(X , R), we will use repeatedly in the sequel the following
form of Taylor expansion around any x0 ∈ X up to order k − 1 ∈ N, as |Z | → 0 in
the chart (2.28) above,

h(Z) = h(x0) +
k−1∑
r=1

∑
|α|=r

∂r h

∂Zα

Zα

α! + O(|Z |k)

= h(x0) +
k−1∑
r=1

p−r/2
∑
|α|=r

∂r h

∂Zα

(
√
pZ)α

α! + p− k
2 O(|√pZ |k). (2.31)

Write dX (·, ·) for the Riemannian distance of (X , gT X
0 ), and for any m ∈ N, let | · |C m

be the local C m-norm induced by derivation with respect to ∇Ep over R × X . Then
Theorem 2.5 is based on the following result.

Theorem 2.6 [21, Th.3.17]Consider a collection of charts of the form (2.28), varying
smoothly with x0 ∈ X, sending 0 to x0 and with differential at 0 inducing the identity
of Tx0X. Then for any m, k ∈ N, θ ∈ ]0, 1[ and any compact subset K ⊂ R, there is
Ck > 0 such that for all p ∈ N and t ∈ K, we have

∣∣Tp,t (x, y)
∣∣
C m � Ck p

−k as soon as dX (x, y) > εp− θ
2 . (2.32)

123



1598 L. Ioos

Furthermore, there is a family {Gr ,t,x0(Z , Z ′) ∈ Et,x0 ⊗ E∗
0,x0

}r∈N of polynomials
in Z , Z ′ ∈ Tx0X of the same parity as r , depending smoothly on x0 ∈ X, such
that for any m,m′, l, k ∈ N, δ ∈]0, 1[ and any compact subset K ∈ R, there is
C > 0 and θ ∈ ]0, 1[ such that for any x0 ∈ X , p ∈ N and Z , Z ′ ∈ Tx0X with
|Z |, |Z ′| < εp−θ/2, we have

sup
|α|+|α′|=m

∣∣∣ ∂ l

∂t l
∂α

∂Zα

∂α′

∂Z ′α′
(
p−nTp,t,x0(Z , Z ′)

−
k1∑
r=0

p−r/2GrTt,x0(
√
pZ ,

√
pZ ′)

)∣∣∣
C m′

(X)
� Cp− k−m

2 +δ, (2.33)

where G0,t,x0(Z , Z ′) is constant in Z , Z ′ ∈ Tx0X, given by

G0,t,x0(Z , Z ′) = μ̄−1
t (x0)τ

E
t,x0 . (2.34)

Let us now consider a diffeomorphism ϕ : X → X preserving the symplectic form
ω, together with a lift ϕL : L → L to the total space of L preserving metric and
connection, and assume that for some t0 ∈ R, we have

Jt0 = dϕ J0 dϕ−1. (2.35)

Assume further that there is a lift ϕE : E0 → Et0 of ϕ preserving metric and connec-
tion, and write ϕp : Ep,0 → Ep,t0 for the induced lift on Ep, for all p ∈ N. For any
s ∈ C∞(X , Ep,t0), we define the pullback ϕ∗

ps ∈ C∞(X , Ep,0) by the formula

(ϕ∗
ps)(x) := ϕ−1

p s(ϕ(x)). (2.36)

This induces by restriction a unitary isomorphism

ϕ∗
p : Hp,t0

∼−−→ Hp,0. (2.37)

Then Theorem 2.8 gives a semi-classical estimate for the trace of the endomorphism
ϕ∗
pTp,t0 ∈ End(Hp,0) as p → +∞, using the trace formula (2.27). To this end, we

need the following assumption.

Definition 2.7 The fixed point set Xϕ ⊂ X of a diffeomorphism ϕ : X → X is said
to be non-degenerate over an open set U ⊂ X if Xϕ ∩ U is a proper submanifold of
U satisfying

Tx X
ϕ = Ker(IdTx X − dϕx ) for all x ∈ Xϕ ∩U . (2.38)

As the lift ϕL preserves hL and ∇L , its value β ∈ C via the canonical identification
L ⊗ L∗ � C is locally constant over Xϕ , and satisfies |β| = 1.

Let Y ⊂ X be a submanifold, and let N be a subbundle of T X over Y transverse to
TY . Write gN for the Euclidean metric on N induced by the metric gT X

0 defined by
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(2.11), and write |dv|T X and |dv|N for the Riemannian densities of (T X , gT X
0 ) and

(N , gN ). We denote by |dv|T X/N the density over Y defined by the formula

|dv|T X = |dv|T X/N |dv|N . (2.39)

We write PN : T X → N for the orthogonal projection with respect to gT X
0 of vector

bundles over Y .

Theorem 2.8 [21, Th.4.3] Assume that the fixed point set Xϕ of ϕ : X → X is non-
degenerate over X, and write {X j }1� j�m for the set of its connected components.
Then there exist densities νr over Xϕ for any r ∈ N such that for any k ∈ N

∗ and as
p → +∞,

Tr[ϕ∗
pTp,t0 ] =

m∑
j=1

pdim X j /2e−2π
√−1pλ j

(
k−1∑
r=0

p−r
∫
X j

νr + O(p−k)

)
, (2.40)

where e2π
√−1λ j is the constant value of ϕL over X j , for some λ j ∈ R. Furthermore,

for any x ∈ Xϕ we have

ν0

|dv|T X/N
(x) = TrEx [ϕE,−1τ E

t0 ]
(
det(

0
t0)

−1τ
KX
t0

)− 1
2

x

∫
Nx

Tt0,x (dϕ.Z , Z)dZ

= TrEx [ϕE,−1τ E
t0 ]
(
det(

0
t0)

−1τ
KX
t0

)− 1
2

x

det
− 1

2
Nx

[
PN (

t0
0 − dϕ−1

0
t0)(IdT X − dϕ)PN

]
, (2.41)

for some natural choices of square roots, where N is any subbundle of T X over Xϕ

transverse to T Xϕ .

The first coefficient (2.41) acquires a geometric interpretation in the special case
when the bundles T Xϕ and N are both preserved by ϕ and J0. In order to describe
it, let ϕKX : KX ,0 −→ KX ,t0 be the natural action induced by ϕ, and recall that
τ
KX
t0 : KX ,0 −→ KX ,t0 has been defined in (2.15). Then ϕKX ,−1τ

KX
t0 ∈ C∞(X , C)

via the canonical identification KX ,0⊗K ∗
X ,0 � C, and one can compute the following.

Proposition 2.9 [21, Lemma 5.1] Assume that the fixed point set Xϕ of ϕ : X → X is
non-degenerate over X, and that there exists a subbundle N of T X over Xϕ transverse
to T Xϕ such that T Xϕ and N are both preserved by ϕ and J0. Then we have the
following formula, for all x ∈ Xϕ ,

(
det(

0
t0)

−1τ
KX
t0

)− 1
2

x

∫
Nx

Tt0,x (dϕ.Z , Z)dZ

= (−1)
dim Nx

4 (ϕKX ,−1τ
KX
t0 )

− 1
2

x | det Nx (IdN − dϕ|N )|− 1
2 , (2.42)

for some natural choices of square roots.
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The previous result acquires an even cleaner formulation in the case when
(E, hE ,∇E ) satisfies

E2 = KX , (2.43)

as a line bundle over R × X with induced metric and connection. Such a line bundle
exists if and only if the first Chern class c1(T X) ∈ H2(X , Z) of T X is even, and the
choice of a complex line bundle E satisfying (2.43) is called a metaplectic structure
on X . We write E =: K 1/2

X , and call it the metaplectic correction. We then get the
following straightforward corollary of Proposition 2.9.

Corollary 2.10 Consider the assumptions of Proposition 2.9, and assume further that
X admits a metaplectic structure. Then if E = K 1/2

X is the associated metaplectic
correction over R × X, the first coefficient ν0 of (2.41) satisfies the formula

ν0 = (−1)
dim N

4 | det N (IdN − dϕ|N )|− 1
2 |dv|T X/N , (2.44)

for some natural choices of square roots.

In the sequel, we will write | · |p for the norm induced on Ep ⊗ E∗
p by h

Ep , for all
p ∈ N.

3 Quantum evolution operators

Let (X , ω) be a compact symplectic manifold without boundary endowed with
(L, hL ,∇L) satisfying the prequantization condition (1.1), and consider a smooth
function f ∈ C∞(X , R). The Hamiltonian vector field ξ f ∈ C∞(X , T X) associated
with f is defined by the formula

ιξ f ω = d f . (3.1)

The Hamiltonian flow of f is the flow of diffeomorphisms ϕt : X → X defined for
all t ∈ R by ⎧⎨

⎩
∂
∂t ϕt = ξ f ,

ϕ0 = IdX .

(3.2)

By definition (3.1) of a Hamiltonian vector field and by Cartan formula, the Hamil-
tonian flow ϕt : X → X preserves ω for all t ∈ R. Let ξ̃ f ∈ C∞(L, T L) be the
horizontal lift of ξ f to the total space of L with respect to∇L , and let t ∈ C∞(L, T L)

be the canonical vector field on the total space of L defined by

t = ∂

∂t

∣∣∣
t=0

e2π
√−1t , (3.3)

for the action of e2π
√−1t by complex multiplication in the fibers. Then the flow (3.2)

lifts to a flow ϕL
t : L → L on the total space of L over X , defined for all t ∈ R by the

formula

123



Geometric quantization of Hamiltonian flows and the… 1601

⎧⎨
⎩

∂
∂t ϕ

L
t = ξ̃ f + f t,

ϕL
0 = IdL .

(3.4)

Note that both ϕt and ϕL
t define 1-parameter groups, as both vector fields defining

them do not depend on t ∈ R. From the definition (3.1) of the Hamiltonian vector
field of f , we see that ϕL

t is the unique lift of ϕt to L preserving the connection ∇L ,
for all t ∈ R. More specifically, for any t ∈ R, recall the pullback of s ∈ C∞(X , L)

by ϕt defined by formula (2.36). Then for any vector field v ∈ C∞(X , T X), we get
from (3.1) and (3.4) that

ϕ∗
t ∇L

v s = ∇L
dϕt .v

ϕ∗
t s. (3.5)

On the other hand, we also deduce from (3.4) the following Kostant formula, for all
t ∈ R,

∂

∂t
ϕ∗
t s =

(
∇L

ξ f
− 2π

√−1 f
)

ϕ∗
t s. (3.6)

For any p ∈ N and t ∈ R, let us write ϕt,p for the flow induced by ϕL
t on the total space

of L p, and ϕ∗
t,p for the associated pullback as in (2.36). Then for any s ∈ C∞(X , L p),

the Kostant formula (3.6) becomes

∂

∂t
ϕ∗
t,ps =

(
∇L p

ξ f
− 2π

√−1p f
)

ϕ∗
t,ps. (3.7)

This formula characterizes f ∈ C∞(X , R) as the Kostant moment map for the action
of R on (L p, hL

p
,∇L p

) induced by ϕt for all t ∈ R.
Note that (3.1) implies that f (ϕt (x)) = f (x) for all t ∈ R and x ∈ X , and (3.2)

implies that dϕt .ξ f = ξ f for all t ∈ R. For all x ∈ X , we write

τt,p : L p
x −→ L p

ϕt (x)
(3.8)

for the parallel transport along the path s 	→ ϕs(x) for s ∈ [0, t]. We can then
reformulate the Kostant formula (3.7) as

ϕ−1
t,pτt,p = e−2π

√−1tp f ∈ C∞(X , C), (3.9)

via the canonical identification L ⊗ L∗ � C.
Let us now consider an almost complex structure J0 ∈ End(T X) over X compatible

with ω. Then for any t ∈ R, the formula

Jt := dϕt J0 dϕ−1
t ∈ End(T X) (3.10)

defines a path {Jt ∈ End(T X)}t∈R of almost complex structures over X compatible
with ω. For any t ∈ R, we write Hp,t for the space of almost holomorphic sections
with respect to Jt defined in Theorem 2.3. Then for any t0 ∈ R and p ∈ N, the pullback
induces by restriction a bijective linear map

ϕ∗
t0,p : Hp,t+t0 −→ Hp,t , (3.11)
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for all t ∈ R. For any fixed p ∈ N, this implies, in particular, that the dimension
dimHp,t does not depend on t ∈ R, so that the quantum bundle (Hp, hHp ,∇Hp ) of
Definition 2.4 is well defined over R for all p ∈ N. Recall the tautological fibration
π : R × X → X considered in (2.10) together with all the data induced by {Jt ∈
End(T X)}t∈R, and consider the flow over R × X defined for all t0 ∈ R by

�t0 : R × X −→ R × X

(t, x) 	−→ (t + t0, ϕt0(x)). (3.12)

For any p ∈ N and t0 ∈ R, the lift ϕt0,p of ϕt0 to (L p, hL
p
,∇L p

) over X induces
tautologically a lift �∗

t0,p of �t0 to the pullback of (L p, hL
p
,∇L p

) over R × X via
the second projection. For any section s ∈ C∞(R × X , L p) over R × X and any
t ∈ R, write st ∈ C∞(X , L p) for the section over X defined by st (x) := s(t, x) for
all x ∈ X . Then for any t0 ∈ R and p ∈ N, the pullback of s ∈ C∞(R × X , L p) by
�t0 is given for any t ∈ R by the formula

(�∗
t0,ps)t = ϕ∗

t0,pst+t0 . (3.13)

By (3.11), the pullback �∗
t0,p preserves the smooth sections C∞(R,Hp) of the quan-

tum bundle, seen as a subspace of C∞(R × X , L p) as in Definition 2.4.
We still write ξ f for the pullback of the Hamiltonian vector field ξ f ∈ C∞(X , T X)

to a vertical vector field over π : R × X → R via the second projection, and write
∂t for the horizontal vector field over π : R × X → R induced by the canonical
vector field of R. By definition of the pullback of (L, hL ,∇L) to R × X , for any
s ∈ C∞(R × X , L p) and t ∈ R, we have

(
∇L p

∂t
s
)
t
= ∂

∂t
st . (3.14)

Recall Definition 2.4 for the connection ∇Hp , and note that for all t, t0 ∈ R, we have

�∗
t0,p Pp,t = Pp,t+t0�

∗
t0,p. (3.15)

Using (3.11) to (3.15), for any smooth section s ∈ C∞(R,Hp) ⊂ C∞(R × X , L p)

and seeing the orthogonal projection Pp : C∞(R × X , L p) → C∞(R,Hp) as a
global endomorphism, we get the following quantized version of the Kostant formula
(3.7), for all t0 ∈ R,

∂

∂t

∣∣∣
t=t0

�∗
t,ps =

(
∇L p

ξ f
− 2π

√−1p f
)

�∗
t0,ps + ∇L p

∂t
�∗

t0,ps

= Pp

(
∇L p

ξ f +∂t
− 2π

√−1p f
)

�∗
t0,p Pps

=
(
Pp∇L p

∂t
Pp + Pp(∇L p

ξ f
− 2π

√−1p f )Pp

)
�∗

t0,ps

=
(

∇Hp
∂t

− 2π
√−1pPp

(
f +

√−1

2π p
∇L p

ξ f

)
Pp

)
�∗

t0,ps. (3.16)
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Seeing the path {Jt ∈ End(T X)}t∈R as lying in the space Jω of almost complex
structures compatible with ω and comparing with the usual Kostant formula (3.7), we
can interpret the quantized Kostant formula (3.16) by stating that the Kostant–Souriau
operator Qp( f ) ∈ End(Hp) given by formula (1.4) induces a moment map on the
quantum bundle Hp over Jω for the natural action of the group of Hamiltonian
diffeomorphisms Ham(X , ω) onJω defined by (3.10).

The relevance of the Kostant–Souriau operator in Kähler geometry goes back to the
work of Cahen, Gutt and Rawnsley [11] relating it to Berezin’s quantization of Kähler
manifolds [1], and the moment map picture described above has been introduced by
Donaldson in [14]. As explained for example in [16, §1], we can consider the line
bundle det(Hp) over any compact submanifold ofJω for p ∈ N big enough, and the
curvature of the connection ∇detHp induced by the L2-connection (2.17) on det(Hp)

defines a natural symplectic form via the prequantization formula (1.1). In the spinc

Dirac operator case, which implies the Kähler case, it follows from the asymptotics of
the curvature of∇Hp as p → +∞ established byMa and Zhang in [29, Th.2.1]. Then
the quantized Kostant formula (3.16) shows that the Hamiltonian flow associated with
the function det(Qp( f )) on Jω is precisely the action of the Hamiltonian flow of f
onJω defined by (3.10).

On the other hand, as described for example in [35, §9.7], the quantum dynamics
is given by the 1-parameter family of unitary operators generated by the quantum
Hamiltonian operator acting on a fixed space of quantum states. For any p ∈ N, we
thus consider the quantum Hamiltonian operator Qp( f ) restricted to the space Hp,0
of almost holomorphic sections with respect to our initial almost complex structure J0.
This induces a one-parameter family exp

(
2π

√−1tpQ p( f )
) ∈ End(Hp,0) of unitary

operators defined for all t ∈ R by

⎧⎨
⎩

∂
∂t exp

(
2π

√−1tpQ p( f )
) = 2π

√−1pQp( f ) exp
(
2π

√−1tpQ p( f )
)
,

exp
(
2π

√−1tpQ p( f )
) ∣∣

t=0 = IdHp,0 .

(3.17)

Writing Tp,t : Hp,0 → Hp,t for the parallel transport with respect to ∇Hp over R as
in Sect. 2, the following Lemma establishes formula (1.3).

Lemma 3.1 For any p ∈ N and all t ∈ R, we have the following equality

exp
(
−2π

√−1tpQ p( f )
)

= ϕ∗
t,pTp,t ∈ End(Hp,0). (3.18)

Proof By Definition 2.4 of the L2-connection ∇Hp , using (3.14) and the fact that
�∗

t0,p commutes with Pp when acting on C∞(R × X , L p) for any t0 ∈ R and p ∈ N,
we have

�∗
t0,p∇

Hp
∂t

= ∇Hp
∂t

�∗
t0,p. (3.19)

Furthermore, as ϕ∗
t0,p commutes with

(
∇L p

ξ f
− 2π

√−1p f
)

when acting on

C∞(X , L p), by (1.4) and the pullback formula (3.13), we get

�∗
t0,pQ p( f ) = Qp( f )�

∗
t0,p. (3.20)
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1604 L. Ioos

This implies the following analogue of (3.9) for the quantized Kostant formula (3.16),
for all t ∈ R,

∂

∂t
ϕ∗
t,pTp,t = −2π

√−1pQp( f )ϕ
∗
t,pTp,t , (3.21)

which follows from the quantized Kostant formula (3.16) in the same way as (3.9)
follows from the usual Kostant formula (3.7). This proves the lemma. ��

Before giving the applications of the results described in Sect. 2 to the quantum
evolution operator defined above, let us illustrates its behavior via the following defi-
nition.

Definition 3.2 For any x0 ∈ X and any unit vector ζ ∈ Lx0 , the associated coherent
state is the sequence {sx0,p ∈ Hp,0}p∈N defined for all x ∈ X by

sx0,p(x) = Pp,0(x, x0)ζ
p, (3.22)

where Pp,0(·, ·) ∈ C∞(X × X , L p � (L p)∗) is the Schwartz kernel with respect to
dvX of the orthogonal projection operator Pp,0 : C∞(X , L p) → Hp,0.

Coherent states represent the quantization of a classical particle located at x0 ∈ X
in phase space. As one can readily check from the definition, it is characterized by the
fact that its orthogonal in Hp,0 consists of sections vanishing at x0 ∈ X . As shown
in [27, Th.0.1, §1.1], the sequence {sx0,p}p∈N decreases rapidly as p → +∞ outside
any open set containing x0, while |sx0,p(x0)|L p is of order pn . Now using the following
tautological identity of operators acting on C∞(X , L p),

exp
(
2π

√−1tpQ p( f )
)

= exp
(
2π

√−1tpQ p( f )
)
Pp,0, (3.23)

and by the classical formula for the Schwartz kernel of the composition of two oper-
ators, for any t ∈ R and x ∈ X , we get from Definition 3.2,

exp
(
2π

√−1tpQ p( f )
)
sx0,p(x)

=
∫
X
exp

(
2π

√−1tpQ p( f )
)

(x, w)Pp,0(w, x0)ζ
p dvX (w)

= exp
(
2π

√−1tpQ p( f )
)

(x, x0)ζ
p. (3.24)

This shows that the last line of (3.24), seen as a section of L p with respect to the
variable x ∈ X , can be interpreted as the quantum evolution at time t ∈ R of the
quantization of a classical particle at x0 ∈ X . In particular, we expect this section to
decrease rapidly as p → +∞ outside any open set containing the classical evolution
ϕt (x0) ∈ X , while its value at ϕt (x0) should be of order pn . The following result
shows that this is indeed the case.
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Proposition 3.3 For any ε > 0, k,m ∈ N, θ ∈ ]0, 1[ and any compact subset K ⊂ R,
there exists Ck > 0 such that∣∣∣exp (2π√−1tpQ p( f )

)
(x, y)

∣∣∣
C m

� Ck p
−k as soon as dX (x, ϕt (y)) > εp− θ

2 ,

(3.25)
for all t ∈ K. Furthermore, there exist ar (t, x) ∈ C for any r ∈ N, depending smoothly
on x ∈ X and t ∈ R, such that for any k ∈ N

∗,

exp
(
2π

√−1tpQ p( f )
)

(ϕt (x), x) = pne2π
√−1tp f (x)

(
k−1∑
r=0

p−r ar (t, x) + O(p−k)

)
τt,p,

(3.26)
with first coefficient a0 satisfying the formula

a0(t, x)
2 =

(
det(

0
−t )

−1τ
KX−t

)−1

x
. (3.27)

In particular, it satisfies a0(t, x) 
= 0 for all t ∈ R and x ∈ X.

Proof Recall that for any x, y ∈ X and t ∈ R, we get from Lemma 3.1 and formula
(2.36) that

exp
(
−2π

√−1tpQ p( f )
)

(x, y) = ϕ−1
t,pTp,t (ϕt (x), y). (3.28)

Then (3.25) is a consequence of the Kostant formula (3.6), together with the rapid
decrease in Tp,t (·, ·) outside of the diagonal given by (2.32).

Using the exponentiation (3.9) of Kostant formula, rewrite (3.28) as

exp
(
2π

√−1tpQ p( f )
)

(ϕt (x), x) = ϕt,pTp,−t (ϕ−t (ϕt (x)), x)

= e2
√−1π tp f (x)τt,pTp,−t (x, x). (3.29)

We can thus apply Theorem 2.6 with x0 = x for Z = Z ′ = 0, and noting that
J2q+1(0, 0) = 0 for all q ∈ N for parity reasons, we then get the expansion (3.26),
with first coefficient satisfying a0(t, x) = μ̄−1−t (x), for all x ∈ X and t ∈ R. This
implies formula (3.27) via the formula (2.24) for μ ∈ C∞(X , C). ��

Recall the non-degeneracy assumption ofDefinition 2.7.We also have the following
semi-classical trace formula for the quantum evolution operator, where we use the
notations of Theorem 2.8.

Theorem 3.4 Let t ∈ R be such that the fixed point set Xϕt of ϕt : X → X is non-
degenerate, and write {X j }1� j�m for the set of its connected components. Then there
exist densities νr over Xϕt for any r ∈ N such that for any k ∈ N

∗ and as p → +∞,

Tr
[
exp

(
−2π

√−1tpQ p( f )
)]

=
q∑
j=1

pdim X j /2e−2π
√−1pλ j

(
k−1∑
r=0

p−r
∫
X j

νr + O(p−k)

)
, (3.30)
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1606 L. Ioos

where e2π
√−1λ j is the constant value of ϕL over X j , for some λ j ∈ R. Furthermore,

we have

ν0 =
(
det(

0
t )

−1τ
KX
t

)− 1
2
det

− 1
2

N

[
PN (t

0 − dϕ−1
t 0

t )(IdT X − dϕt )P
N
]
|dv|T X/N ,

(3.31)
for some natural choices of square roots.

Proof Using Lemma 3.1, this is a straightforward consequence of Theorem 2.8. ��
The coefficient λ j ∈ R appearing in the expansion (3.30) has a natural geometric

interpretation, which fits in a more general context. In fact, note that the evolution
equations (3.2) and (3.4) generalize to time-dependent Hamiltonians F ∈ C∞(R ×
X , R), so that f ∈ C∞(X , R) is replaced by ft ∈ C∞(X , R) depending on t ∈ R,
with ft (x) := F(t, x) for all x ∈ X . In that case, we also get a Hamiltonian flow
ϕt : X → X together with a lift ϕL

t to the total space of L preserving metric and

connection. The main difference here is that the term replacing
(
∇L

ξ f
− 2π

√−1 f
)
in

the Kostant formula (3.6) will depend on time, and the corresponding exponentiation
as in (3.9) at x ∈ X reads

(ϕ−1
t,pτt,p)x = e−2π

√−1p
∫ t
0 fs (ϕs (x))ds . (3.32)

Let now x ∈ X and t ∈ R be such that ϕt (x) = x , and via the canonical identification
Lx ⊗ L∗

x � C, let us write

ϕL
t,x =: e2

√−1πλt (x). (3.33)

Note that the path s 	→ ϕs(x) defines a loop γ inside X . Assuming that this loop
bounds an immersed disk D ⊂ X , by the prequantizaton condition (1.1) and via
(3.32) above, we get

λt (x) =
∫
D

ω +
∫ t

0
fs(ϕs(x))ds. (3.34)

This is a familiar quantity in symplectic topology, called the action of F around the
loop γ . Recall that as ϕL preserves the connection ∇L , the quantity λt (x) ∈ R is
constant when x ∈ X varies continuously over a submanifold of fixed points of ϕt .
This discussion motivates the following definition.

Definition 3.5 Let F ∈ C∞(R×X , R)be a time-dependentHamiltonian, and let t ∈ R

be such that its Hamiltonian flow ϕt : X → X at time t ∈ R has non-degenerate fixed
point set Xϕ ⊂ X in the sense of Definition 2.7. Then for any connected component
Y of Xϕ , the associated real number λ0 ∈ R defined over Y by

ϕL
t =: e2

√−1πλ0 (3.35)

is called the action of F over Y .

In the general case of a time-dependent Hamiltonian F ∈ C∞(R × X , R), we get
a quantum Hamiltonian as before from the corresponding quantized Kostant formula

123



Geometric quantization of Hamiltonian flows and the… 1607

(3.16), and we can define the associated evolution operator by equation (3.17). Then
the analogue of Lemma 3.1 holds in that case, and the analogues of Proposition 3.3
and Theorem 3.4 hold in the same way.

Finally, the situation described above also generalizes to the case when (L p, hL
p
,

∇L p
) over R × X is replaced by Ep = L p ⊗ E with induced metric and connection,

where (E, hE ,∇E ) is a Hermitian vector bundle with connection over R × X . In that
case, we make the further assumption that the Hamiltonian flow ϕt : X → X lifts to
a bundle map ϕE

t : E0 → Et over X preserving metric and connection for all t ∈ R,
and we still write ϕt,p for the corresponding action on Ep for any p ∈ N. Then the
analogue of Lemma 3.1 for the quantum evolution operator defined by equation (3.17)
holds as before, and using the general setting of Sect. 2, we also get the corresponding
analogues of Proposition 3.3 and Theorem 3.4. The case of E = K 1/2

X , with the lift

induced by ϕ
KX
t : KX ,0 → KX ,t for all t ∈ R, will be of particular interest in the next

section.

4 Gutzwiller trace formula

Consider the setting of the previous section, with Hamiltonian f ∈ C∞(X , R) not
depending on time, and a Hermitian vector bundle with connection (E, hE ,∇E ) over
R × X , so that L p is replaced by Ep = L p ⊗ E for all p ∈ N. Let g : R → R be a
smooth function with compact support, and for all t ∈ R, set

ĝ(t) :=
∫
R

g(t)e−2π
√−1t dt . (4.1)

We define the family of operators {ĝ(pQp( f )) ∈ End(Hp)}p∈N by the formula

ĝ(pQp( f )) :=
∫
R

g(t)
(
ϕ∗
t,pTp,t

)
dt . (4.2)

In the particular case of E = C, so that Lemma 3.1 holds, we get

ĝ(pQp( f )) =
∫
R

g(t) exp(−2π
√−1tpQ p( f ))dt, (4.3)

recovering the usual definition via functional calculus from (4.1). Note that formula
(1.7) for ĝ(pQp( f − c)) with c ∈ R follows from (3.2), (3.4) and (2.36), as replacing
f ∈ C∞(X , R) by f − c does not change the Hamiltonian flow ϕt : X → X
but multiplies its lift to L by e−2π

√−1tc. In the context of semi-classical analysis, the
Gutzwiller trace formulapredicts a semi-classical estimate for the traceTr[ĝ(pQp( f −
c))] as p → +∞, where c ∈ R is a regular value of f , showing that it localizes around
the periodic orbits of the Hamiltonian flow of f inside the level set f −1(c).

The following preliminary result shows that the Schwartz kernel of ĝ(pQp( f −c))
decreases rapidly outside f −1(c) as p → +∞.

123



1608 L. Ioos

Proposition 4.1 Let c ∈ R be a regular value of f ∈ C∞(X , R). For any k ∈ N, there
exists Ck > 0 such that for any y ∈ X , x ∈ X\ f −1(c) and p ∈ N, we have

∣∣ĝ(pQp( f − c))(x, y)
∣∣
p � Ck

| f (x) − c |k p
n− k

2 . (4.4)

Proof To simplify notations, we assume E = C, the case of general E being com-
pletely analogous. Recall the definition (3.8) of τt,p, and p ∈ N. For any x ∈ X and
t0 ∈ R, consider a chart around x0 := ϕt0(x) ∈ X as in (2.28), such that the radial
line generated by ξ f ,x0 in BTx0 X (0, ε) is sent to the path s 	→ ϕs(x0) in Vx0 . Then L p

is identified with L p
x0 along this path by the parallel transport τt,p, for all p ∈ N and

|t | < ε. Thus for any Z ∈ BTx0 X (0, ε) sent to y ∈ Vx0 in the chart (2.28) and for any
t ∈ R small enough, we have

τ−1
t,pTp,t0+t (ϕt0+t (x), y) = Tp,t0+t,x0(tξ f ,x0 , Z). (4.5)

Using τt0+t,p = τt,pτt0,p for all t0 ∈ T and |t | < ε, we can apply Theorem 2.6 in
such charts for all t0 ∈ R, so that for any k ∈ N we get Ck > 0 such that for any
x, y ∈ X , t ∈ Supp g and all p ∈ N, we have

∣∣∣∣ ∂k

∂tk
τ−1
t,pTp,t (ϕt (x), y)

∣∣∣∣
p

� Ck p
n+ k

2 . (4.6)

Recall from (3.1) that the Hamiltonian flow of f is the same as the Hamiltonian flow
of f − c, for all c ∈ R. Then exponentiating Kostant formula as in (3.9) and as Supp g
is compact, we can integrate by parts to get from the definition (4.2) of ĝ(pQp( f ))
that for any x, y ∈ X and k ∈ N,

ĝ(pQp( f − c))(x, y)

=
∫
R

g(t)τ−1
t,pTp,t (ϕt (x), y)e

−2π
√−1tp( f (x)−c)dt

= 1

(−2π
√−1p( f (x) − c))k

∫
R

g(t)τ−1
t,pTp,t (ϕt (x), y)

∂k

∂tk
e−2π

√−1tp( f (x)−c)dt

= (2π
√−1)−k p−k

( f (x) − c)k

∫
R

∂k

∂tk

(
g(t)τ−1

t,pTp,t (ϕt (x), y)
)
e−2π

√−1tp( f (x)−c)dt . (4.7)

This proves the result by (4.6). ��
Let us now estimate the Schwartz kernel of ĝ(pQp( f − c)) as p → +∞.

Proposition 4.1 shows that it localizes around the level set f −1(c), in contrast with
Proposition 3.3. In the following theorems and their proofs, we will use freely the
notations of Sects. 1 and 2.

Theorem 4.2 Let c ∈ R be a regular value of f ∈ C∞(X , R). If x, y ∈ X do not
satisfy ϕt (x) = y for some t ∈ R or do not satisfy f (x) = f (y) = c, then for any
k ∈ N, there exists Ck > 0 such that for all p ∈ N,
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∣∣ĝ(pQp( f − c))(x, y)
∣∣
p < Ck p

−k . (4.8)

Let x, y ∈ f −1(c), and write T := {t ∈ R | ϕt (x) = y}. Then there exist bt0,r ∈ C

for all r ∈ N and t0 ∈ T such that for any k ∈ N
∗ and as p → +∞,

ĝ(pQp( f − c))(x, y) = pn− 1
2
∑
t0∈T

g(t0)

⎛
⎝k−1∑
r=0

p−r bt0,r + O(p−k)

⎞
⎠(ϕE,−1

t0 τ E
t0

)
τ−1
t0,p.

(4.9)
Furthermore, for any t0 ∈ T , we have

b2t0,0 =
(
det(

0
t0)

−1τ
KX
t0

)−1

x
〈t0

0 ξ f ,x , ξ f ,x 〉−1
gT X
0

. (4.10)

In particular, it satisfies bt0,0 
= 0, for all t0 ∈ T .

Proof Note first that the estimate (4.8) is a straightforward consequence of either
Theorem 2.6 or Proposition 4.1, respectively.

To establish the expansion (4.9), fix x, y ∈ X such that f (x) = f (y) = c ∈ R is
a regular value of f . Then f (x) − c = 0, and exponentiating the Kostant formula as
in (3.9), we can write the Schwartz kernel of ĝ(pQp( f − c)) as

ĝ(pQp( f − c))(x, y) =
∫
R

g(t)τ−1
t,pϕ

E,−1
t Tp,t (ϕt (x), y)dt . (4.11)

As c ∈ R is a regular value of f , the Hamiltonian vector field ξ f does not vanish over
f −1(c). By (2.32), this implies that for any θ ∈ ]0, 1[ and ε > 0, we get the following
estimate as p → +∞,

ĝ(pQp( f − c))(x, y) =
∑
t0∈T

∫ t0+εp− θ
2

t0−εp− θ
2

g(t)τ−1
t,pϕ

E,−1
t Tp,t (ϕt (x), y)dt + O(p−∞),

(4.12)

where all terms but a finite number vanish by compacity of Supp g.
Consider a chart around y as in (2.28), sending the radial line generated by ξ f ,y in

BTy X (0, ε) to the path s 	→ ϕs(y) in Vy . Then L p is identified with L p
y along this path

by the parallel transport τt,p, for all p ∈ N and |t | < ε. Using τt0+t,p = τt,pτt0,p for
all t0 ∈ T and |t | < ε, we can then apply Theorem 2.6 to get a family {Gr ,t,y(Z , Z ′) ∈
Et,y ⊗ E∗

0,y}r∈N of polynomials in Z , Z ′ ∈ Ty X of the same parity as r and smooth in
t ∈ R, such that for any δ ∈ ]0, 1[ and k ∈ N

∗, there is θ ∈ ]0, 1[ such that for all p ∈ N,

ĝ(pQp( f − c))(x, y) =
∑
t0∈T

pnτ−1
p,t0

∫ εp− θ
2

−εp− θ
2
g(t0 + t)ϕE,−1

t0+t

k−1∑
r=0

p− r
2GrTt0+t,y(

√
ptξ f ,y, 0)dt + pn− θ

2 O(p− k
2+δ).

(4.13)
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Consider the right-hand side of (4.13), and let us apply the Taylor expansion in t ∈ R

described in (2.31) on all terms depending on t ∈ R, respectively, inside and outside
the exponential of the local model (2.29) forTt0+t,y . We then get Fr ,t0(t) ∈ Et0 ⊗ E∗

0 ,
polynomial in t ∈ R and of the same parity as r for any r ∈ N, such that for all t0 ∈ T
and as |t | → 0,

k−1∑
r=0

p− r
2 g(t0 + t)ϕE,−1

t0+t GrTt0+t,y(
√
ptξ f ,y, 0)

= g(t0)ϕ
E,−1
t0

k−1∑
r=0

p−r/2Fr ,t0(
√
pt) exp

(
−pπ〈t0

0 ξ f ,y, ξ f ,y〉t2
)

+p− k
2 O(|√pt |Mk ), (4.14)

for some Mk ∈ N
∗ depending on the degrees of the polynomials Gr ,t0+t,y for all

|t | < ε, t0 ∈ T ∩Supp g and 1 � r � k. Furthermore, from the formula (2.34) for the
first coefficient G0,t,y , we know that F0,t0(t) = μ̄−1

t0 (y)τ E
t0,y for all t ∈ R. Note that

by the definition (2.22) of 
t0
0 , the real part of 〈t0

0 ξ f , ξ f 〉 is strictly positive, so that
the right-hand side of (4.14) decreases exponentially in t ∈ R. Writing

δk = δ + Mk(1 − θ)

2
, (4.15)

and after a change of variable t 	→ t/
√
p, we then get

ĝ(pQp( f − c))(x, y) =
∑
t0∈T

g(t0)μ̄
−1
t0 (y)ϕE,−1

t0 τ E
t0 τ−1

p,t0 p
n− 1

2

k−1∑
r=0

p− r
2

∫
R

Fr ,t0(t) exp
(
−π〈t0

0 ξ f ,y, ξ f ,y〉t2
)
dt

+pn− 1
2 O(p− k

2+δk ). (4.16)

As F2q+1,t0(t) is odd as a function of t ∈ R for all q ∈ N, we get

∫
R

F2q+1,t0(t) exp
(
−π〈t0

0 ξ f ,y, ξ f ,y〉t2
)
dt = 0. (4.17)

As δk → δ when θ → 1 by (4.15) and as δ can be chosen arbitrary small, this gives
the expansion (4.9), and we get the formula (4.10) for the first coefficient via the
classical formula for Gaussian integrals, using the formula (2.24) and the fact that
F0,t0(t) = μ̄−1

t0 (y)τ E
t0 for all t ∈ R. ��

Consider now the hypotheses and notations of Theorem 1.2. Recall that c ∈ R is
a regular value of f , so that � := f −1(c) is a smooth manifold. Then there exists
ε > 0 and diffeomorphisms
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Geometric quantization of Hamiltonian flows and the… 1611

�t0 : f −1(]c − ε, c + ε[) ∼−−→ ]c − ε, c + ε[ ×� (4.18)

for all t0 ∈ T , such that f (u, x) = u for all (u, x) ∈ ]c − ε, c + ε[ ×� under this
identification, and such that

�t0

(
Xϕt0 ∩ f −1(]c − ε, c + ε[)

)
=

⋃
1� j�m
t j=t0

]c − ε, c + ε[ × Y j , (4.19)

where the connected components Y j of X
ϕt j ∩ f −1(c) are seen as submanifolds of

�, for all 1 � j � m. We endow � with the Riemannian metric gT� induced by
gT X
0 := ω(J0·, ·) via the inclusion � = f −1(c) ⊂ X . For any 1 � j � m, let |dv|Y j

be the Riemannian density over Y j induced by gT� and let N be the normal bundle
of Y j inside �. We write PN : T� → N for the orthogonal projection with respect
to gT� over Y j for all 1 � j � m.

Recall that the Liouville measure on the level set f −1(c) is induced by the volume
form

ιv ωn

(n − 1)! ∈ �2n−1( f −1(c), R), (4.20)

for any v ∈ C∞( f −1(c), T X) satisfying ω(ξ f , v) = 1, and does not depend on such
a choice. We write Volω( f −1(c)) > 0 for the volume of f −1(c)with respect to (4.20).
Recalling Definition 3.5, the following theorem is a version of the Gutzwiller trace
formula in geometric quantization of compact prequantized symplecticmanifolds, and
is the main result of this section.

Theorem 4.3 Under the above assumptions, there exist b j,r ∈ C for all r ∈ N and
1 � j � m, such that for any k ∈ N

∗, we have as p → +∞,

Tr
[
ĝ(pQp( f − c))

] =
m∑
j=1

p(dim Y j−1)/2g(t j )e
−2π

√−1pλ j

⎛
⎝k−1∑
r=0

p−r b j,r + O(p−k)

⎞
⎠ ,

(4.21)

where λ j ∈ C is the action of f over Y j . Furthermore, for all 1 � j � m we have

b j,0 =
∫
Y j

TrE [ϕE,−1
t j τ E

t j ]
(
det(

0
t j )

−1τ
KX
t j

)− 1
2

det
− 1

2
N

[
PN (

t j
0 − dϕ−1

t j 
0
t j )(IdT X − dϕt j )P

N
] |dv|Y j

|ξ f |gT X
0

, (4.22)

for some natural choices of square roots. In particular, we have as p → +∞,

Tr
[
ĝ(pQp( f − c))

] = pn−1g(0) rk(E)Volω( f −1(c)) + O(pn−2). (4.23)
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1612 L. Ioos

Proof First note that replacing f ∈ C∞(X , R) by f − c, we are reduced to the case
c = 0. Consider thus f ∈ C∞(X , R) satisfying the hypotheses of Theorem 1.2 with
c = 0. Using the trace formula (2.27) and the definition of ĝ(pQp( f )) in (4.2) for all
p ∈ N, we know that

Tr
[
ĝ(pQp( f ))

] =
∫
X
Tr
[
ĝ(pQp( f ))(x, x)

]
dvX (x)

=
∫
X

∫
R

g(t)Tr
[
ϕ−1
t,pTp,t (ϕt (x), x)

]
dt dvX (x). (4.24)

For any ε > 0, write
U (ε) := f −1(] − ε, ε [). (4.25)

Then by Proposition 4.1, for any θ ∈ ]0, 1[ and k ∈ N, we get Ck > 0 such that for all

x ∈ X\U (εp− θ
2 ), ∣∣ĝ(pQp( f ))(x, x)

∣∣
p � Ck

εk
pn− k(1−θ)

2 , (4.26)

so that in particular, we have as p → +∞,

Tr
[
ĝ(pQp( f ))

] =
∫
U (εp−θ/2)

Tr
[
ĝ(pQp( f ))(x, x)

]
dvX (x) + O(p−∞). (4.27)

Recall that T := {t ∈ Supp g | ∃ x ∈ f −1(0), ϕt (x) = x} is finite, and let ε > 0 be
such that all u ∈ ] − ε, ε[ are regular values of f , so that the Hamiltonian vector field
ξ f does not vanish on the closure of U (ε). Then in the same way as in (4.12), we get
from the rapid decrease (2.32) of Tp,t (·, ·) outside the diagonal that as p → +∞,

Tr
[
ĝ(pQp( f ))

]
=
∑
t0∈T

∫
U (εp−θ/2)

∫ t0+εp−θ/2

t0−εp−θ/2
g(t)Tr

[
ϕ−1
t,pTp,t (ϕt (x), x)

]
dt dvX (x) + O(p−∞).

(4.28)

Take ε > 0 small enough so that the identification �t0 of (4.18) holds for any t0 ∈ T .
Recall from (3.1) that the Hamiltonian vector field ξ f is tangent to the level sets of f .
Then for any t0 ∈ T , we get diffeomorphisms ϕu,t : � → �, depending smoothly on
u ∈ ] − ε, ε[ and t ∈ ]t0 − ε, t0 + ε[, such that

ϕt (u, x) = (u, ϕu,t (x)) and ϕu,t0(x) = x for all x ∈ Y j , (4.29)

in the coordinates (u, x) ∈ �t0(U (ε))of (4.18) and for all 1 � j � m such that t j = t0.
For any ε > 0 and 1 � j � m, consider the normal geodesic neighborhood Vj (ε) ⊂ �

of Y j inside (�, gT�). Then by the non-degeneracy assumption of Definition 2.7 and
as all u ∈ ]−ε, ε[ are regular values of f , themap� : (u, t, x) 	→ (u, t, ϕu,t (x)) is also
non-degenerate around the fixed point set ]−ε, ε[× {t j }×Y j inside ]−ε, ε[ × R×�,
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Geometric quantization of Hamiltonian flows and the… 1613

so that working in local charts, we see that there exists ε′ > 0 such that for all θ ∈ ]0, 1[
and p ∈ N,

d�(x, ϕu,t (x)) > ε′ p−θ/2 as soon as

(t, x) , /∈
⋃

1� j�m

]t j − εp−θ/2, t j + εp−θ/2[ × Vj (εp
−θ/2), (4.30)

for all u ∈ ] − ε, ε[. On the other hand, as f (x, u) = u in the coordinates (u, x) ∈
�t j (U (ε)) of (4.18), by the definition (3.1) of the Hamiltonian vector field ξ f and the
definition (2.11) of gT X

0 , we get a function � ∈ C∞(U (ε), R) such that over U (ε),
we have

dvX = � du dv� and �(0, x) = |ξ f ,x |−1
gT X
0

for all x ∈ �. (4.31)

We can then rewrite (4.28) as

Tr
[
ĝ(pQp( f ))

]
=

m∑
j=1

∫
Vj (εp−θ/2)

∫ εp− θ
2

−εp− θ
2

∫ εp− θ
2

−εp− θ
2
Tr
[
I j,p(t, u, x)

]
dt du dv�(x) + O(p−∞),

(4.32)

where in the coordinates (u, x) ∈ �t j (U (ε)) and for any t ∈ ]t j − ε, t j + ε[, we set

I j,p(t, u, x) = g(t j + t)ϕ−1
t j+t,pTp,t j+t ((u, ϕu,t j+t (x)), (u, x))�(u, x). (4.33)

Recall that N denotes the normal bundle of Y j inside � equipped with the metric gN

induced by gT� , and consider the natural identification

Vj (ε)
∼−−→ BN (ε) := {w ∈ N | |w|N < ε}. (4.34)

As (ϕt j (x) = x) implies (ϕt j (ϕt (x)) = ϕt (x)) for all t ∈ R and x ∈ X by the 1-
parameter group property of ϕt , we know that its flow is transverse to the fibers of the
ball bundle BN (ε) via the identification (4.34) for ε > 0 small enough. We can then
pick x0 ∈ Y j and u ∈ ] − ε, ε[, and consider the natural embedding defined from the
fiber BN

x0(ε) of the ball bundle (4.34) over x0 and a neighborhood I ⊂ R of 0 by

I × BN
x0(ε)

∼−−→ Wu ⊂ �

(t, w) 	−→ ϕu,t j+t (w). (4.35)

We identify in turn Wu with a subset of Tx0� via the inclusion

I × BN
x0(ε) −→ Tx0�

(t, w) 	−→ w + tξ f ,u, where ξ f ,u := ∂

∂t
ϕu,t (x0) ∈ Tx0�. (4.36)
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1614 L. Ioos

For any u ∈ ] − ε, ε[, we identify L over Wu with the pullback of L over BN
x0(ε) via

parallel transport with respect to∇L along flow lines of t 	→ ϕu,t , then trivialize L over
BN
x0(ε)via parallel transportwith respect to∇L along radial lines. Then L p is trivialized

by the parallel transport τt,p along the flow lines of ϕt , and by the exponentiation of
Kostant formula (3.9), we have in this trivialization,

ϕ−1
t,p = e2

√−1π ptu for all |t | < ε and p ∈ N. (4.37)

Now by the definition (3.1) of ξ f and as {u}×� corresponds to the level set f −1(u) via
the identification �t j of (4.18), we know that for any vector field v ∈ C∞(Wu, T�),
we have

RL (v, ξ f
) = 2π√−1

ω
(
v, ξ f

) = 0. (4.38)

This shows that the trivialization of L described above coincides with a trivialization
along radial lines ofWu in (4.36), for all u ∈ ]−ε, ε[, so that we are under the hypothe-
ses of Theorem 2.6. As in Definition 3.5 and using (4.19) under the identification �t j
of (4.18), define the action λ j ∈ R by

ϕt j ,p =: e2π
√−1pλ j over ] − ε, ε[ × Y j . (4.39)

By a standard computation,which can be found for example in [26, (1.2.31)] andwhich
holds in any trivialization of L along radial lines, the connection ∇L at w ∈ BN

x0(ε)

inside Wu ⊂ Tx0� as in (4.36) has the form

∇L = d + 1

2
RL(w, .) + O(|w|2). (4.40)

Using this formula together with the fact that ϕL preserves ∇L , we get in our coordi-
nates a smooth bounded function λx0 of u ∈ ] − ε, ε[ and w ∈ BN

x0(0, ε) such that

ϕ−1
t j ,p = e−2π

√−1pλ j exp(p|w|3λx0(u, w)) over ] − ε, ε[ × Vj (ε). (4.41)

We can then apply Theorem 2.6 in a chart of the form (2.28) around (u, x0) and
containing Wu ⊂ Tx0� ⊂ T(u,x0)X via the identifications (4.36) and (4.18), to get
from (4.33) as p → +∞,

I j,p(t, u, w) = pne−2π
√−1pλ j g(t j + t) exp(p|w|3λx0 (u, w))e2

√−1π ptuρ(u, w)

ϕ
E,−1
t j+t

k−1∑
r=0

p− r
2 GrTt j+t,(u,x0)(

√
pϕu,t j+t (w),

√
pw) + pnO(p− k

2+δ),

(4.42)

for all t, u ∈ R with |t − t j |, |u| < εp−θ/2 and w ∈ BN
x0(εp

−θ/2). Following (4.14),
we apply the Taylor expansion described in (2.31) to the right-hand side of (4.42) in
t, u andw, inside and outside the exponential of the local model (2.29) forTt j+t,(u,x0).
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Geometric quantization of Hamiltonian flows and the… 1615

We then get a family {Fr ,x0(t, u, w) ∈ Et j ,x0 ⊗ E∗
0,x0

}r∈N of polynomials in w ∈ Nx0
and t, u ∈ R, of the same parity as r , depending smoothly in x0 ∈ Y j and with
F0,x0(t, u, w) = μ̄−1

t j (x0)τ E
t j ,x0 for all t, u and w, such that for any k ∈ N, there is

Mk ∈ N
∗ such that as p → +∞,

I j,p(t, u, w) = pne−2π
√−1pλ j g(t j )|ξ f ,x0 |−1

gT X
0

ϕ
E,−1
t j ,x0

k−1∑
r=0

p− r
2 Fr ,x0 (

√
pt,

√
pu,

√
pw)

e2
√−1π ptuTt j ,x0 (

√
ptξ f ,x0 + √

pdϕt j .w,
√
pw) + pn− k

2 +δO(|√pt |Mk + 1).

(4.43)

Using the non-degeneracy assumption of Definition 2.7 together with the explicit
formula (2.29) for the local model, we see that (4.43) decreases exponentially in
t ∈ R and w ∈ Nx0 , but not in u ∈ R. Now to get an exponential decrease in u ∈ R,
we will make the change of variables t 	→ t/

√
p and u 	→ u/

√
p, integrate first with

respect to t ∈ R and then with respect to u ∈ R. With this in mind, from the local
model (2.29), we get for any t, u ∈ R and w ∈ Nx0 ,

e2
√−1π tuTt j ,x0 (tξ f ,x0 + dϕt j .w, w) = Tt j ,x0 (dϕt j .w, w)

exp
[
−π t2〈t j

0 ξ f ,x0 , ξ f ,x0 〉 − π t〈(t j
0 + (

t j
0 )∗)ξ f ,x0 , dϕt j .w − w〉 + 2

√−1π tu
]
.

(4.44)

Using the classical formula for theFourier transformofGaussian integrals,we compute∫
R

( ∫
R

exp
[

− π t2〈t j
0 ξ f ,x0 , ξ f ,x0〉

− π t〈(t j
0 + (

t j
0 )∗)ξ, dϕt j .w − w〉 + 2

√−1π tu
]
dt
)
du

= 〈t j
0 ξ f ,x0 , ξ f ,x0〉−

1
2

∫
R

exp

⎡
⎢⎣−π

4

(
2u + √−1〈(t j

0 + (
t j
0 )∗)ξ f ,x0 , dϕt j .w − w〉

)2
〈t j

0 ξ f ,x0 , ξ f ,x0〉

⎤
⎥⎦ du

= 〈t j
0 ξ f ,x0 , ξ f ,x0〉−

1
2

∫
R

exp

[
−π

u2

〈t j
0 ξ f ,x0 , ξ f ,x0〉

]
du = 1, (4.45)

for a suitable choice of square root in the middle terms. In particular, this computation
shows that we get an exponential decrease in u ∈ R after integration with respect to
t ∈ R. Using successive integration by parts, this computation readily generalizes to
the case when the exponential is multiplied by a polynomial Fr ,x0(t, u, w) of the same
parity as r ∈ N, to get as a result a polynomial Hr ,x0(w) ∈ Et j ,x0 ⊗E∗

0,x0
inw ∈ Nx0 of

the same parity as r ∈ N, with H0,x0(w) = μ̄−1
t j (x0)τ E

t j ,x0 for all w ∈ Nx0 . Thus from

(4.43), for all k ∈ N we get δk ∈ ]0, 1[ as in (4.15) such that for all w ∈ BN
x0(εp

−θ/2)

as p → +∞,
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1616 L. Ioos

∫ εp− θ
2

−εp− θ
2

∫ εp− θ
2

−εp− θ
2
Tr
[
I j,p(t, u, w)

]
dt du

= p−1
∫ εp

1−θ
2

−εp
1−θ
2

∫ εp
1−θ
2

−εp
1−θ
2

Tr
[
I j,p(p

−1/2t, p−1/2u, w)
]
dt du

= p−1
∫
R

(∫
R

Tr
[
I j,p(p

−1/2t, p−1/2u, w)
]
dt

)
du + O(p−∞)

= pn−1e−2π
√−1pλ j g(t j )

k−1∑
r=0

p− r
2 Tr

[
ϕ
E,−1
t j ,x0 Hr ,x0(

√
pw)

]

Tt j ,x0(
√
pdϕt j .w,

√
pw) + pn−1O(p− k

2+δk ). (4.46)

Working locally, we can suppose that Y j is orientable. Let dvY j be the Riemannian
volume form on Y j induced by gT� , let dw be the Euclidean volume form on the
fibers of (N , gN ) and let ρ ∈ C∞(BN (ε), R) be such that via the identification (4.34)
of Vj (ε) with the ball bundle BN (ε) over Y j , we have

dv� = ρ dw dvY j and ρ(0, x) = 1 for all x ∈ Y j . (4.47)

Through the change of variablew 	→ w/
√
p, using the exponential decrease in (4.46)

in w ∈ Nx0 and taking the Taylor expansion in w ∈ Nx0 of ρ(w, x0) as described
in (2.31) for all x0 ∈ Y j , we then get polynomials Kr ,x0 ∈ C[w] of the same parity

as r ∈ N, with K0,x0(w) = μ̄−1
t j (x0)Tr

[
ϕ
E,−1
t j ,x0 τ E

t j ,x0

]
, such that using (4.46), we can

rewrite (4.32) as

Tr
[
ĝ(pQp( f ))

] = p(dim Y j−1)/2
[ ∫

x∈Y j

( ∫
BN
x (εp(1−θ)/2)

e−2π
√−1pλ j g(t j )

ρ(p−1/2w, x)
k−1∑
r=0

p− r
2 Kr ,x (w)Tt j ,x (dϕt j .w,w)dw

)
dvY j (x) + O(p− k

2 +δ′
k )
]

= p(dim Y j−1)/2
[
e−2π

√−1pλ j g(t j )

� k−1
2 �∑

q=0

p−q

∫
x∈Y j

( ∫
Nx

K2q,x (w)Tt j ,x (dϕ.w,w)dw
) dvY j

|ξ f |gT X
0

(x) + O(p− k
2 +δ′

k )
]
, (4.48)

for some δ′
k ∈ ]0, 1[ satisfying δ′

k → δ as θ → 1, where all the terms with r odd
vanished in the same way as in (4.17) by the odd parity of K2q+1,x for all q ∈ N.
This shows the expansion (4.21), and formula (4.22) follows from (4.48) and the
second equality of (2.41). Finally, formula (4.23) follows from the fact that function
μt ∈ C∞(X , C) of (2.20) is constant equal to 1 for t = 0 and the fact that the vector
field v ∈ C∞( f −1(c), T X) defining the volume form (4.20) over f −1(c) can be
chosen to be v = J0ξ f /|ξ f |2gT X

0
. ��
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Under the assumptions of Theorem 1.2, consider now the case when Y j ⊂ �

satisfy dim Y j = 1 for some 1 � j � m, so that Y j = {ϕs(x)}0�s<t(Y j ), for some
x ∈ f −1(c) satisfying ϕt (x) = x . Here t(Y j ) > 0 is the smallest time t > 0 for which
ϕt (x) = x , called the primitive period of Y j . We then get the following special case of
Theorem 4.3, recovering the explicit geometric term associated with isolated periodic
orbits in the Gutzwiller trace formula of Theorem 1.3.

Theorem 4.4 Consider the hypotheses of Theorem 1.2, and let 1 � j � m be such
that dim Y j = 1 and such that [J0ξ f , ξ f ] = 0 over Y j . Then the term b j,0 ∈ C of
(4.22) is given by

b j,0 = (−1)
n−1
2

∫
Y j

(ϕ
KX ,−1
t j τ

KX
t j )− 1

2 Tr[ϕE,−1
t j τ E

t j ]
| det N (IdN − dϕt j |N )|1/2

|dv|Y j

|ξ f |gT X
0

, (4.49)

for some natural choices of square roots. If X admits a metaplectic structure (2.43)
and taking E = K 1/2

X to be the associated metaplectic correction, then formula (4.49)
becomes

b j,0 = (−1)
n−1
2

t(Y j )

| detNx (IdN − dϕt j |N )|1/2 , (4.50)

not depending on x ∈ Y j .

Proof The assumption [J0ξ f , ξ f ] = 0 over Y j means that dϕt . Jξ f = Jξ f over Y j for
all t ∈ R. As dϕt .ξ f = ξ f by definition and as dϕt preserves the symplectic formω, by
definition (2.11) of gT X

0 , this implies that dϕt preserves the normal bundle N ⊂ T�

of Y j inside �, for all t ∈ R. We are then under the assumptions of Proposition 2.9,
and formula (4.49) is a consequence of Theorem 4.3.

Note now that from the 1-parameter group property of ϕt , for any t ∈ R and x ∈ Y j ,
we have

dϕt j ,ϕt (x) = dϕt,xdϕt j ,xdϕ−1
t,x . (4.51)

This shows that the quantity det Nx (IdN − dϕt j |N ) is actually independent of x ∈ Y j .

Considering the case E = K 1/2
X and recalling that ξ f is the tangent vector field of the

curve Y j , we get

∫
Y j

(ϕ
KX ,−1
t j τ

KX
t j )−

1
2 TrE [ϕE,−1

t j τ E
t j ]

|dv|Y j

|ξ f |gT X
0

=
∫
Y j

|dv|Y j

|ξ f |gT X
0

= t(Y j ). (4.52)

This gives formula (4.50). ��

Let us now show how these results can be applied to contact topology. To that end,
consider f ∈ C∞(X , R) and an almost complex structure J ∈ End(T X) satisfying

dιJξ f ω = ω over f −1(I ), (4.53)
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over some interval I ⊂ R of regular values of f . Then considering the Riemannian
metric gT X = ω(·, J ·) as in (2.11), the form

− ιJξ f ω

|ξ f |2gT X

∈ �1(X , R) (4.54)

restricts to a contact form α ∈ �1(�, R) over � := f −1(c) for any c ∈ I , meaning
that α ∧ dαn−1 is a volume form over �. The restriction of the Hamiltonian vector
field ξ f ∈ C∞(X , T X) over f −1(c) induces the Reeb vector field of (�, α), which
is the unique vector field ξ ∈ C∞(�, T�) satisfying⎧⎨

⎩
ιξ α = 1,

ιξdα = 0.
(4.55)

The corresponding Reeb flow is the flow of diffeomorphisms ϕt : � → � generated
by ξ , and its periodic orbits are called the Reeb orbits of (�, α). An isolated Reeb
orbit of period t0 ∈ R is said to be non-degenerate if it satisfies Definition 2.7 as a
fixed point set of ϕt0 inside �.

Conversely, given a compact manifold � endowed with a contact form α ∈
�1(�, R), we define a symplectic form ωS� ∈ �2(S�, R) over S� := R × �

by the formula

ωS� := −d(euπ∗α), with π : S� := R × � −→ �.

(u, x) 	−→ x (4.56)

The symplectic manifold (S�,ωS�) is called the symplectization of (�, α). Consider
the function f ∈ C∞(S�, R) defined by

f (u, x) := eu for all (u, x) ∈ R × �. (4.57)

Then its Hamiltonian vector field ξ f ∈ C∞(S�, T S�) restricts over any level set of
f to the Reeb vector field ξ ∈ C∞(�, T�) of (�, α). On the other hand, consider an
almost complex structure J ∈ End(T S�) compatible with ωS� satisfying

Jξ f = ∂

∂u
, (4.58)

in the coordinates (u, x) ∈ R × � = S�. Such an almost complex structure always
exists. Finally, consider the situation when an open set of the form I × � ⊂ S�

can be symplectically embedded into a compact prequantized symplectic manifold
(X , ω)without boundary.We can then extend theHamiltonian and the almost complex
structure defined by (4.57) and (4.58) to the whole of (X , ω) using partitions of unity.
The typical case when such an embedding exists is when � is the boundary of a star-
shaped domain in R

2n , with contact form α ∈ �1(�, R) given by the restriction of
the standard Liouville form λ ∈ �1(R2n, R). Then using a Darboux chart, an open
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set of the form I × � ⊂ S� can always be symplectically embedded in (X , ω).
More generally, by the results of [15, Th.1.3] and [24, Cor. 1.11], any fillable contact
manifold satisfies this property. The following result then shows how to use the above
picture to extract pieces of information on isolated non-degenerate Reeb orbits of
(�, α) from the geometric quantization of (X , ω).

Proposition 4.5 Let � be a compact manifold without boundary endowed with a
contact form α ∈ �1(�, R), and assume that an open set of the form I × � in
its symplectization (S�,ωS�) can be symplectically embedded in a compact pre-
quantized symplectic manifold (X , ω) without boundary. Consider the Hamiltonian
f ∈ C∞(X , R) and the almost complex structure J ∈ End(T X) defined via (4.57)
and (4.58).

Then for any c ∈ I , Theorem 1.2 holds as soon as the fixed point set of the Reeb
flow ϕt : � → � is non-degenerate for all t ∈ Supp g, and Theorem 1.3 holds for
the non-degenerate isolated Reeb orbits of (�, α) in case (X , ω) is endowed with a
metaplectic structure.

Proof Recall that the Hamiltonian vector field ξ f ∈ C∞(S�, T S�) of f ∈
C∞(S�, R) defined by (4.57) restricts to the Reeb vector field ξ ∈ C∞(�, T�)

of (�, α) over {u} × �, for all u ∈ R. Then the Hamiltonian flow ϕt : X → X of
f over I × � is of the form ϕt (u, x) = (u, ϕt (x)) for all (u, x) ∈ I × �. It thus
satisfies the hypotheses of Theorem 1.2 as long as the fixed point set of the Reeb flow
ϕt : � → � is non-degenerate for all t ∈ Supp g, the discreteness of T ⊂ Supp g
following from the fact that dϕt preserves Ker α ⊂ T� for all t ∈ R, so that by (4.55)
there is no v ∈ Ker αx such that ξx + dϕt .v = v for any x ∈ � satisfying ϕt (x) = x .
On the other hand, the formula (4.58) shows

[Jξ f , ξ f ] =
[ ∂

∂u
, ξ
]

= 0 over R × �, (4.59)

so that the hypotheses of Theorem 1.3 are satisfied as well. This shows the result. ��
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