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Abstract. We compute a Hirzebruch-Riemann-Roch type formula for the invariant
Riemann-Roch number of a quantizable Hamiltonian S1-manifold (M,ω,J ), allowing 0 to
be a singular value of the moment map J : M → R. Our formula represents an instance
of the Guillemin-Sternberg principle, which states that quantization should commute with
reduction. The conceptual novelty of our result is that the involved reduced system only
depends on the symplectic data of M . To establish this, we derive a complete singu-
lar stationary phase expansion of the Witten integral without appealing to any kind of
desingularization. As a consequence, our formula expresses the invariant Riemann-Roch
number purely in terms of symplectic invariants of the singular symplectic quotient. In
particular, it involves a new explicit symplectic invariant of the singularities.

1. Introduction

Let (M,ω,J ) be a compact connected symplectic manifold equipped with a Hamiltonian
action of a compact connected Lie group G with moment map J : M → g∗. Then the
associated Marsden-Weinstein reduced space, or simply the symplectic quotient, is given by

(1.1) M0 := J −1({0})/G .

If 0 is a regular value of the moment map, the symplectic quotient naturally inherits the
structure of a symplectic orbifold (M0, ω0), but in general, it is only a stratified symplectic
space, each smooth stratum being naturally equipped with a symplectic structure.

This paper is devoted to the computation of the invariant Riemann-Roch number of
(M,ω,J ) in terms of the geometry of the associated symplectic quotient (1.1). To in-
troduce it, one has to impose the condition that the cohomology class [ω] ∈ H2(M,Z) is
integral, in which case (M,ω) is called quantizable. This condition is equivalent to the
existence of a Hermitian line bundle (L, hL) overM equipped with a Hermitian connection
∇L with curvature RL satisfying the prequantization condition

(1.2) ω =
i

2π
RL .

The Hamiltonian G-manifold (M,ω,J ) is prequantized if the action of G lifts to an action
on (L, hL,∇L) and the moment map J : M → g∗ is given in terms of the lifted action
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by the Kostant formula (2.12). Upon choosing a G-invariant almost complex structure
J ∈ End(TM) over M compatible with ω, one gets a Riemannian metric on M defined by

(1.3) gTM := ω(·, J ·) .
On can then consider the associated Spinc-Dirac operators D± : Ω0,±(M,L) → Ω0,∓(M,L)
defined in Section 2.2, which are elliptic first order differential operators, and thus have
finite dimensional kernels. The action of G on (L, hL) induces an action on these kernels,
and one defines the associated invariant Riemann-Roch number as

(1.4) RRG(M,L) := dim(KerD+)G − dim(KerD−)G ,

where (KerD±)G ⊂ KerD± denotes the subspace of G-invariant vectors. By the classical
invariance of the index of Fredholm operators, the invariant Riemann-Roch number (1.4)
does not depend on the choice of the compatible almost complex structure J ∈ End(TM)
over (M,ω), nor on the choice of hL and ∇L satisfying the prequantization condition (1.2).
In case that G is trivial, it reduces to the classical Riemann-Roch number RR(M,L), which
is computed by the celebrated Hirzebruch-Riemann-Roch formula

(1.5) RR(M,L) =

∫
M

eω Td(M) ,

where the closed form Td(M) ∈ Ω∗(M,C) of mixed degrees is the Todd form of (M,J, gTM),
whose cohomology class does not depend on J and hence is a symplectic invariant of (M,ω).

In case of a general G and when 0 is a regular value of the moment map J , so that the
symplectic quotient (M0, ω0) is an orbifold prequantized by a line bundle (L0, h

L0), by a
general result of Meinrenken [28] one has

(1.6) RRG(M,L) =

∫
M0

eω0 Td(M0) = RR(M0, L0) .

In the special case G = S1, this was previously established independently by Meinrenken
in [27, Theorem 2.1, (16)] and by Vergne in [38]. As explained in [38], these results rely on
localization formulas for certain oscillatory integrals of equivariant differential forms which
were first studied by Witten in [39], based on previous work of Duistermaat and Heckman
in [9]. To obtain (1.6) within this approach, one expresses RRG(M,L) by means of the
equivariant Hirzebruch-Riemann-Roch formula in a guise due to Berline and Vergne [3],
called the Kirillov formula. This formula involves the equivariant Todd form Tdg(M) ∈
Ω∗
G(M) defined in Section 2.3, whose cohomology class in the equivariant cohomology with

analytic coefficients Hω
G(M) is an invariant of the Hamiltonian G-action on (M,ω). The

resulting expression for RRG(M,L) is given in terms of a Witten integral, which can then
be treated using the stationary phase principle. In doing so, one passes from the equivariant
cohomology Hω

G(M) to the usual cohomology H(M0) of the symplectic quotient through
the well-known Kirwan map κ : Hω

G(M) → H(M0) described in Proposition 4.1. Since in
the case G = S1 one has κ(Tdg(M)) = Td(M0), this gives the first equality in (1.6), while
the second follows from (1.5).

In this paper, we are mainly interested in the considerably more involved case when 0
is a singular value of the moment map and restrict ourselves to the case G = S1, which
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already encompasses essential features of the singular case. Denoting by MS1 ⊂M the set
of fixed points of the S1-action and setting J −1({0})reg := J −1({0}) \

(
MS1 ∩ J −1({0})

)
we have a stratification of J −1({0}) according to

(1.7) J −1({0}) =
(
MS1 ∩ J −1({0})

)
⊔ J −1({0})reg ,

where the connected components of each stratum are smooth submanifolds ofM . To avoid
any artificial complications, we will assume for simplicity that S1 acts freely on J −1({0})reg,
so that the regular stratum of the symplectic quotient, defined by

M reg
0 := J −1({0})reg/S1 ,

has no orbifold singularities. We still write ω0 for the symplectic form over the smooth
stratum M reg

0 characterized by the formula inc∗0 ω = π∗
0 ω0, where inc0 : J −1({0})reg ↪→M

is the inclusion map and π0 : J −1({0})reg → M reg
0 the quotient map. Following Notation

3.1, let us write F0 for the set of connected components of MS1 ∩ J −1({0}). A connected
component F ∈ F0 is called definite if J attains a local extreme value at F , and indefinite
otherwise. We write F0

def ⊂ F0 and F0
indef ⊂ F0 for the corresponding subsets. Note

that because J −1({0}) is connected, all F ∈ F0 are either definite or indefinite, and we
shall say that J −1({0}) is of definite or indefinite type, respectively. For any F ∈ F0,
let ωF := inc∗F ω ∈ Ω2(F,R) be the symplectic form on F ⊂ M induced by the inclusion
inc : F ↪→ M , and let νΣF

: ΣF → F be the associated symplectic normal bundle. We
write

ΣF =:
⊕
k∈W

Σ
(k)
F

for its decomposition into isotypic components with respect to the induced linear S1-action,
whereW ⊂ Z denotes the finite subset of weights as described in Section 3.1. The compat-
ible almost complex structure J ∈ End(TM) over (M,ω) and the associated Riemannian
metric gTM given by (1.3) induce for each weight k ∈ W ⊂ Z a complex structure and

Hermitian norm ∥ · ∥F on Σ
(k)
F by restriction, and we write RΣ

(k)
F ∈ Ω2(F,End(Σ

(k)
F )) for

the curvature of the connection on Σ
(k)
F induced by the Levi-Civita connection of gTM for

each k ∈ W . Let us finally consider for F ∈ F0
indef the fiberwise product

(1.8) νSF
: SF := S+

F ×F S
−
F −→ F ,

where S±
F → F are the unit sphere bundles of the subbundles Σ±

F ⊂ ΣF of positive and
negative weights, respectively. By the local normal form theorem of Proposition 3.2, the
total space of SF is naturally identified with the boundary of a neighborhood of F inside
J −1({0}). We write

(1.9) νSF
: SF := (S+

F /S
1)×F (S−

F /S
1) −→ F

for the orbifold bundle obtained by taking the fiberwise product of the quotient of each
sphere by the induced locally free S1-action. Its de Rham cohomology ring will be denoted
by H(SF ).
Our main result is the following Hirzebruch-Riemann-Roch type formula for the invariant

Riemann-Roch number (1.4).
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Theorem 1.1. Let (M,ω,J ) be a compact connected prequantized Hamiltonian S1-manifold
such that the S1-action is free on J −1({0})reg. The S1-invariant Riemann-Roch number
(1.4) is given by

(1.10) RRS1

(M,L) =

∫
M reg

0

eω0κ(Tdg(M)) +
∑

F∈F0
indef

∫
SF

e
ν∗SF

ωFκF (Tdg(M))

+
∑
F∈F0

ResF

(
z−1

∫
F

eωF Td(F )∏
k∈W det

Σ
(k)
F
(1− zk exp(RΣ

(k)
F /2πi))

)
,

where κ : Ω∗
S1(M) −→ Ω∗(M reg

0 ,C) and κF : Hω
S1(M) → H(SF ) denote the regular Kirwan

map (4.3) and the exceptional Kirwan map (1.11), respectively, and ResF stands for the
residue at z = 0 if J has a local minimum at F , the residue at z = ∞ if J has a local
maximum at F , or the average of the two residues otherwise.
Furthermore, every term on the right-hand side of Formula (1.10) is independent of the

choice of a compatible almost complex structure J ∈ End(TM) over (M,ω) and of the
choice of (L, hL,∇L) satisfying the prequantization condition (1.2).

As we explain in more detail below, Theorem 1.1 represents an instance of the Guillemin-
Sternberg principle in the singular case and is characterized by the novel conceptual feature
that it expresses the invariant Riemann-Roch number purely in terms of the symplectic
invariants of the singular symplectic quotient M0. In particular, replacing L by the tensor
power Lm := L⊗m for anym ∈ N, so that the symplectic form ω is replaced bymω, one sees
that each term of the right hand side of Formula (1.10) for RRS1

(M,Lm) is polynomial
in m ∈ N, and Theorem 1.1 thus gives explicit formulas to compute the coefficients of
RRS1

(M,Lm) as a polynomial in m ∈ N in terms of symplectic invariants of M0. Let us
also point out that Theorem 1.1 is already relevant in the complex case, giving an explicit
formula for the canonical ring of singular projective varieties M0 obtained as GIT quotients
by a C∗-action of a smooth projective variety M .

In case that 0 is a regular value of the moment map J , so that MS1 ∩ J −1({0}) = ∅,
the last two terms of Formula (1.10) vanish and Theorem 1.1 reduces to the invariant
Riemann-Roch formula (1.6), as already explained there. At the other extreme end, in

case that MS1 ∩ J −1({0}) = J −1({0}), so that the action of S1 on J −1({0}) is trivial
and M0 = J −1({0}) inherits a natural prequantizing line bundle (L0, h

L0) by restriction,
the first two terms of Formula (1.10) vanish and Theorem 1.1 reduces again to (1.6) by
taking into account the fact that in this case all F ∈ F0 are definite, so that all weights
k ∈ W of the S1-action on ΣF are of the same sign, and that in this case the sum
over all residues precisely equals the middle term in (1.6). This was first established by
Duistermaat, Guillemin, Meinrenken and Wu in [8, § 2]. Theorem 1.1 can thus be seen as
an interpolation between these two extreme cases which covers also the genuinely singular
case. In particular, the middle term in Formula (1.10) appears to be a previously unknown
object involving a new explicit symplectic invariant of the singularities.

To describe this term more closely, let Θ±
SF

∈ Ω1(SF ,R) be the pullbacks to (1.8) of

connections for the S1-actions on S±
F in the sense of (2.8) for any F ∈ F0

indef . At the level
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of S1-equivariant differential forms as in Definition (2.7) and using the same notation as
for the Kirwan map (4.1), the image of an equivariantly closed form ϱ ∈ Ω∗

S1(M) by the
exceptional Kirwan map is the element in Ω∗(SF ,C) defined by

(1.11) κF (ϱ) :=
1
2

(
ϱSF

( i
2π
dΘ+

SF
) + ϱSF

( i
2π
dΘ−

SF
)
)
− ϱSF

(
i
4π
(dΘ+

SF
+ dΘ−

SF
)
)

dΘ+
SF

− dΘ−
SF

,

where we wrote ϱSF
:= ν∗SF

inc∗Fϱ ∈ Ω∗
S1(SF ) for the pullback to SF of the restriction of ϱ to

F . The numerator on the right-hand side of (1.11) is a multiple of dΘ+
SF

−dΘ−
SF

inside the
ring Ω∗(SF ,C), which gives an obvious sense to the fraction. Hence, as it is also closed and
basic for the action of S1 on both sphere bundles S±

F , by Proposition 2.4, Formula (1.11)
induces a well-defined map κF : Hω

S1(M) → H(SF ) in cohomology. In fact, the numerator
in (1.11) is even a multiple of (dΘ+

SF
−dΘ−

SF
)2, so that the right-hand side of (1.11) is itself

a multiple of dΘ+
SF

− dΘ−
SF
. This implies in particular that κF , and hence the middle term

in Formula (1.10), vanishes when dimM < 6.
The invariant Riemann-Roch formula (1.6) is the content of the celebrated Quantization

commutes with Reduction principle of Guillemin and Sternberg, which they formulated in
[11] in the case of Kähler manifolds, always under the assumption that 0 a regular value
of the moment map. In that case, the kernel of the Spinc-Dirac operator D± reduces to
the kernel of the Dolbeault ∂-operator acting on Ω0,±(M,L). In particular, the kernel of
the ∂-operator restricted to Ω0,0(M,L) coincides with the space H0(M,L) of holomorphic
sections of L over M , which is interpreted in [11] as the quantization of the classical phase
space (M,ω). Furthermore, 0 being a regular value, the symplectic reduction (M0, ω0)
inherits a natural structure of a Kähler orbifold, and it was shown in [11] that there is a
natural isomorphism

(1.12) H0(M,L)G ≃ H0(M0, L0) .

The identity (1.12) was generalized to the kernel of the ∂-operator restricted to Ω0,j(M,L)
for each j > 0 by Teleman [35] and Zhang [40]. Taking the alternating sum of dimensions
of these spaces, this precisely leads to the invariant Riemann-Roch formula (1.6) in the
context of Kähler manifolds. As we explain in Section 2.2, Formula (1.6) naturally extends
to general symplectic manifolds, so that it constitutes the appropriate extension of Quan-
tization commutes with Reduction in the general symplectic case, since the isomorphism
(1.12) does not make sense in general. In case that L is replaced by the tensor power
Lm := L⊗m for m ∈ N large enough, Formula (1.6) was established by Meinrenken in
[27] by the approach already described above, then by Jeffrey-Kirwan in [19] relying on
the so-called Witten non-abelian localization formula stated in [39], which was established
rigorously by Jeffrey and Kirwan in [18]. In general, Formula (1.6) was first established by
Meinrenken in [28] using the symplectic cutting techniques of Lerman [23], then by Tian
and Zhang [36] using the analytic localisation techniques of Bismut-Lebeau [4]. Formula
(1.6) was generalized to the case of manifolds with boundary by Tian and Zhang in [37],
then to the case of non-compact (M,ω) by Ma and Zhang in [26] and Paradan in [32]. A
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generalization to compact CR-manifolds was recently established by Ma, Marinescu, and
Hsiao in [15].

In case that 0 is a singular value of the moment map, there is an immediate difficulty
coming from the fact that there is no natural definition of the Riemann-Roch number
RR(M0, L0) ∈ Z of a singular symplectic quotient M0, and one is tempted to define it
directly as RR(M0, L0) := RRG(M,L), making the result tautological. More substantially,
one can consider the Riemann-Roch number of various notions of symplectic desingulariza-
tion of stratified symplectic spaces, such as Kirwan’s partial desingularization or the shift
desingularization. The invariant Riemann-Roch number RRG(M,L) was shown to coincide
with the Riemann-Roch number of Kirwan’s partial desingularization by Meinrenken and
Sjamaar in [29], and of the shift desingularization by Meinrenken and Sjamaar in [29],
Zhang [40] and Paradan in [31]. In the case G = S1, Tian and Zhang established in [37,
Theorem 6.4] an identity in terms of a Riemann-Roch number for shift desingularizations
containing a term similar to the last term in Formula (1.10).

A main drawback of the approaches described above is that the desingularization depends
on a number of choices and is in no way unique, while the symplectic structure also depends
on the choice of an auxiliary parameter ε > 0. In particular, these results do not allow
to compute RRG(M,L) in terms of the symplectic invariants of the symplectic quotient
M0 itself and do not provide a canonical Hirzebruch-Riemann-Roch type formula such as
(1.6). In contrast, Theorem 1.1 does not rely on any desingularization process and provides
an explicit formula for RRG(M,L) in which every term is a well-defined invariant of the
Hamiltonian action of S1 on (M,ω). Thus, our formula satisfies the key requirement of
the Guillemin-Sternberg principle that the involved reduced system should only depend on
the symplectic data of M , answering an almost 30 years old question of Sjamaar in [34,
pp. 124-126].

In order to compare Theorem 1.1 more closely with the mentioned previous results, we
provide in Section 4.2 natural topological conditions on the S1-action under which the first
term in (1.10) can be interpreted topologically as

(1.13)

∫
M reg

0

eω0κ(Tdg(M)) =

∫
M̃0

eω̃0κ̃(Tdg(M)) ,

where π : M̃0 → M0 denotes the partial resolution of M0 and ω̃0 denotes the degenerate

2-form over M̃0 coinciding with ω0 on the dense open set M reg
0 , while κ̃ : Hω

S1(M) −→
H(M̃0) is the usual Kirwan map of the resolution. By contrast, the Riemann-Roch formula
obtained via the method of Meinrenken and Sjamaar in [29] reads

(1.14) RRG(M,L) =

∫
M̃0

eω̃ε Tdε(M̃0) ,

where the symplectic form ω̃ε ∈ Ω2(M̃0,R) depends on the choice of a parameter ε > 0

such that ω̃ε
ε→0−−→ ω̃0, while Tdε(M̃0) ∈ Ω∗(M̃0,R) denotes the induced Todd form. In

particular, as ω̃0 is degenerate, the Todd form Tdε(M̃0) does not admit a limit as ε → 0,
so that the right hand side is not well defined a priori for ε = 0. Let us also point out
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that Jeffrey, Kiem, Kirwan, and Woolf in [17], and Lerman and Tolman in [24] in the case
of G = S1, studied Kirwan maps to the intersection cohomology of the singular quotient.
The relation of their Kirwan maps to our resolution Kirwan map is explained in Remark
4.8.

Our main tool for the proof of Theorem 1.1 is the already mentioned Witten integral,
which we introduce in Definition 5.1. In fact, Theorem 1.1 is established as a consequence
of our second main result, Theorem 5.7, where we compute an asymptotic expansion of
the Witten integral in terms of geometric invariants associated with the singular sym-
plectic quotient. This allows us to directly compute the invariant Riemann-Roch number

RRS1

(M,L) by adapting the method of Meinrenken in [27] to the singular case. The as-
ymptotic parameter in the Witten integral is given by the power m → ∞ of the tensor
power Lm := L⊗m of the prequantizing line bundle. It can therefore be regarded as a
semiclassical limit, so that from this viewpoint Theorem 1.1 becomes an instance of the
correspondence principle of quantum mechanics. Asymptotics of the Witten integral for
general Hamiltonian G-manifolds and when 0 is a singular value of the moment map were
first obtained by Paradan in [30, Theorem 5.1] relying on partitions of unity in equivari-
ant cohomology with generalized coefficients. There, the coefficients in the expansion are
given by integrals over the shifted Marsden-Weinstein reduced spaces Mε = J −1({ε})/G
for some ε ∈ g∗ close to but different from 0. In certain algebraic settings, an asymp-
totic expansion of the Witten integral was also derived by Jeffrey, Kiem, Kirwan, and
Woolf in [17, Section 9] using the localization principle. Accordingly, the coefficients in the
asymptotics are given in terms of residues. In contrast, the coefficients in our asymptotic
expansion of the Witten integral are given in terms of integrals on the symplectic strata
of M0, which is crucial in proving Theorem 1.1. Our approach was preceded by work of
Küster (n.k.a. Delarue) and Ramacher in [6] within a purely analytic context, motivated by
the original attempt of Ramacher [33] of proving residue formulae via singular equivariant
asymptotics.

Let us finally note that the assumption of S1 acting freely on J −1({0})reg, meaning
that there are no orbifold singularities over M reg

0 , is not essential. In fact, the result of
Meinrenken in [27], which we extend in this paper to case when 0 is a singular value of
the moment map, holds for orbifolds as well, and our contribution mainly focuses on the
most singular stratum MS1 ∩J −1({0}). Following the general method of Meinrenken, one
can certainly extend our method to orbifolds, obtaining a Kawasaki-Riemann-Roch type
formula which extends (1.10). In a future work, we intend to generalize our results to
general compact group actions.

We begin our exposition in Section 2 by giving a detailed account on the background
and setup of our paper. In Section 3 we study the geometry of the zero level set of the
moment map around its singularities, which will be crucial for the ensuing analysis, and
introduce the relevant Kirwan maps in Section 4. Based on these results, we derive in
Section 5 a complete asymptotic expansion of the Witten integral. Finally, we establish in
Section 6 the proof of our main result Theorem 1.1.
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2. Background and setup

Before we introduce our setup, let us first fix some global notation. For any vector
bundle E over a smooth manifold M and for all k ∈ N, we will write Ωk(M,E) for the

space of differential forms of degree k with values in E, and Ω∗(M,E) :=
⊕dimM

k=0 Ωk(M,E)
for the space of differential forms of mixed degrees with value in E. We will use the same
notation for any vector space V , which we regard as a trivial vector bundle over M . We
will denote the inclusion A ↪→ B of a subset A ⊂ B into a set B by incA, the target set
B being clear from the context. For a finite Cartesian product X = X1 × · · ·XN , we will
write prXj

: X → Xj for the canonical projection onto the factor Xj.

2.1. Equivariant cohomology. Let M be a smooth manifold equiped with a smooth
action of a compact Lie group G. Write Sω(g∗) for the complex vector space of analytic
series on g with complex coefficients converging in a neighborhood of 0 ∈ g. The coadjoint
action of G on g∗ induces a natural action on Sω(g∗).

Definition 2.1. The complex of analytic G-equivariant differential forms is the complex
vector space of G-invariants

Ω∗
G(M) := (Ω∗(M,C)⊗ Sω(g∗))G

for the natural G-action on the tensor product, equipped with the equivariant differential

dg : Ω
∗
G(M) −→ Ω∗

G(M),

σ(X) 7−→ dσ(X) + 2πi X̃ ⌟ σ(X) .
(2.1)

The cohomology of the complex (Ω∗
G(M), dg) is denoted by Hω

G(M) and called equivariant
cohomology of M with analytic coefficients.

In the above definition and in the sequel, we will often write equivariant differential
forms σ(X) ∈ Ω∗

G(M) with explicit dependence on the variable X ∈ g. We point out that
there are several competing conventions for the definition of the equivariant differential in
the literature, with the factor 2πi in (2.1) replaced by other constants. Similarly, the sign
in (2.10) is a convention. We follow here Meinrenken’s conventions in [27]. The following
version of the Stokes Lemma for equivariant differential forms can be found for instance in
[5, §4].

Lemma 2.2. (Equivariant Stokes’ lemma) Let U ⊂ M be an open set such that its
closure U ⊂ M is a compact submanifold with boundary. Then, for any σ ∈ Ω∗

G(M) we
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have ∫
U

dgσ(X) =

∫
∂U

σ(X) .

For a submanifold N ⊂M we write νΣN
: ΣN → N for its normal bundle inside TM and

identify N canonically with the zero section in ΣN . The following version of the classical
homotopy lemma for equivariant differential forms follows for instance from [10, Theorem
6.1].

Lemma 2.3. (Equivariant homotopy lemma) Let N ⊂M be a submanifold preserved
by the action of G, and let ΦN : VN → UN be a G-equivariant diffeomorphism between
a tubular neighborhood VN ⊂ ΣN of the zero section of ΣN and a tubular neighborhood
UN ⊂ M of N . Then, for any equivariant cohomology class [ϱ] ∈ Hω

G(M) there exists an
equivariant form βN ∈ Ω∗

G(VN) such that

(2.2) Φ∗
N(ϱ|UN

) = ν∗ΣN
inc∗Nϱ|VN + dgβN .

Furthermore, the equivariant form βN ∈ Ω∗
G(VN) can be chosen such that inc∗N βN ≡ 0 and

such that for any open set S ⊂ VN on which we already have Φ∗
N(ϱ|UN

)|S = ν∗ΣN
inc∗Nϱ|S,

one has βN |S ≡ 0.

The second part of Lemma 2.3, which will be used in Section 5 to establish Lemma 5.3,
follows from the fact that N is a strong deformation retract of UN and the explicit form of
the homotopy operator used for instance in [10, Theorem 6.1] to construct the equivariant
form βN ∈ Ω∗

G(VN) of Formula (2.2).
Consider now the important special case when the G-action is locally free, so that the

quotient map

(2.3) π :M −→M/G

is a G-principal bundle over the orbifold M/G. We then have the following basic result.

Proposition 2.4. The pullback by the quotient map (2.3) induces an isomorphism of
complexes

(2.4) π∗ : (Ω(M/G,R), d) ∼−−→ (Ω(M)Gbas, d) ,

where the subcomplex of basic differential forms Ω(M)Gbas ⊂ Ω(M,R) is defined by

(2.5) Ω(M)Gbas := {σ ∈ Ω∗(M,R)G | X̃ ⌟ σ = 0} ,

The cohomology of the complex (2.5) is called the basic cohomology of M , and Proposi-
tion (2.4) shows that it is isomorphic to the de Rham cohomology H(M/G) of the orbifold
M/G. On the other hand, one has the following fundamental notion in Chern-Weil theory,
which will be of crucial importance in this paper.

Definition 2.5. A connection for a locally free G-action on M is a g-valued 1-form Θ ∈
Ω1(M, g) satisfying for all X ∈ g

X̃ ⌟Θ = X .
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In what follows, we will mainly be interested in the case where G = S1 is the circle
group, which we realize as the subgroup of complex numbers of modulus 1, inducing an
identification

g
∼−→ R

X 7−→ x ,
(2.6)

in such a way that X ∈ g exponentiates to e2πix ∈ S1 ⊂ C. This induces in turn an
identification g∗ ≃ R of the dual of the Lie algebra with R and of the Lebesgue measure
on the interval [0, 1] with the normalized Haar measure on S1. Under this identification,
Definition 2.1 becomes

(2.7) Ω∗
S1(M) = Ω(M,Sω(R))S1

,

the complex vector space of S1-invariant differential forms with values in entire analytic
series of the variable x ∈ R. We will write S1-equivariant differential forms σ(x) ∈ Ω∗

S1(M)
with explicit dependence in the variable x ∈ R, when they are understood in the iden-
tification (2.7), so that they can actually be seen as functions of x ∈ R with values in
S1-invariant differential forms. Furthermore, Definition 2.5 of a connection for the S1-
action on M becomes under this identification a 1-form Θ ∈ Ω1(M,R) such that for any
X ∈ g with image x ∈ R by (2.6), we have

(2.8) X̃ ⌟Θ = x .

The following basic lemma is then a straightforward consequence of Proposition 2.4 and
Definition 2.5 via the identification (2.6).

Lemma 2.6. Assume that the S1-action on M is locally free, let Θ ∈ Ω1(M,R) be an
associated connection in the sense of (2.8), and let σ ∈ Ω(M/S1) be closed. Then we have

(2.9)

∫
M

π∗σ ∧Θ =

∫
M/S1

σ

in terms of the isomorphism of complexes (2.4). In particular, the integral on the left-hand
side of (2.9) only depends on the basic cohomology class of σ.

2.2. Dirac operators and invariant Riemann-Roch numbers. To introduce our
proper setup, let us now focus on the case of a Hamiltonian G-action on a compact con-
nected symplectic manifold (M,ω) of dimension 2n. Recall that a G-equivariant map
J : M → g∗ is called a moment map for such an action if for all X ∈ g, the function
J (X) ∈ C∞(M,R) satisfies

(2.10) dJ (X) = −X̃ ⌟ ω ,

where d is the de Rham differential and ⌟ denotes the contraction. By definition, a Hamil-
tonian G-action on a symplectic manifold (M,ω) induces a locally free action on the level
set J −1({0}) if and only if 0 is a regular value of J : M → g∗. For G = S1, under the
identification (2.6) the moment map J :M → g∗ corresponds to a function J ∈ C∞(M,R)
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which we still call moment map, such that for any X ∈ g with image x ∈ R by (2.6), we
have

(2.11) J (X) = xJ ∈ C∞(M,R) .
Next, let (M,ω) be endowed with a so-called prequantizing line bundle (L, hL,∇L), so

that (L, hL) is a Hermitian line bundle over M with a Hermitian connection ∇L whose
curvature RL ∈ Ω2(M,C) satisfies the prequantization condition (1.2). We denote by
C∞(M,L) the space of smooth sections of L. Let further G be a connected compact
Lie group such that G acts on L over M , preserving the Hermitian metric hL and the
connection ∇L. Such an action is called prequantized, and the induced action of G on
(M,ω) then preserves the symplectic form ω. Following for instance [27, (25)] adapted to
our conventions, there is a canonical choice of moment map J :M → g∗ for a prequantized
action of G on (M,ω) defined by the Kostant formula

(2.12) J (X)s :=
i

2π

(
LXs−∇L

X̃
s
)

for all s ∈ C∞(M,L) and X ∈ g, where X̃ ∈ C∞(M,TM) denotes the fundamental vector
field onM associated with X and LX denotes the Lie derivative with respect to X induced
by the G-action. This is the moment map which will underly all our considerations from
now on.

Next, choose a G-invariant compatible almost complex structure J ∈ End(TM) over
(M,ω), inducing a splitting

(2.13) TM ⊗ C = T (1,0)M ⊕ T (0,1)M

on the complexification TM ⊗ C of TM into the eigenspaces of J corresponding to the
eigenvalues i and −i, respectively. Consider the total exterior product

(2.14) Λ(T ∗(0,1)M) :=
n⊕
j=0

Λj(T ∗(0,1)M) ,

where T ∗(0,1)M denotes the dual bundle of T (0,1)M . For any v ∈ TM with decomposition
v = v1,0 + v0,1 according to (2.13), we define its Clifford action on α ∈ Λ(T ∗(0,1)M) by

(2.15) c(v)α :=
√
2 (v1,0)∗ ∧ α− v0,1 ⌟ α ,

where (v1,0)∗ denotes the metric dual of v1,0 in T ∗(0,1)M with repect to the induced Her-
mitian metric gTM defined by (1.3). As explained for instance in [22, Appendix D], the
Clifford action (2.15) on Λ(T ∗(0,1)M) is associated with the canonical Spinc structure of

the almost Hermitian manifold (M,J, gTM), and there is an induced connection∇Λ(T ∗(0,1)M)

on Λ(T ∗(0,1)M), which we call the Clifford connection. Following [25, §1.3.1], the Clifford

connection ∇Λ(T ∗(0,1)M) is given in any local orthonormal frame {ej}nj=1 of (TM, gTM) by
the formula

∇Λ(T ∗(0,1)M) = d+
1

4

2n∑
j,k=1

⟨ΓTMej, ek⟩gTM c(ej)c(ek) +
1

2
Γdet ,
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where ΓTM is the local connection form of the Levi-Civita connection ∇TM associated with
gTM and Γdet is the local connection form associated with the connection on det (T (1,0)M) :=
Λn(T (1,0)M) induced by ∇TM . Finally, for any m ∈ N, we write Ω0,∗(M,Lm) for the space
of smooth sections of Λ(T ∗(0,1)M) ⊗ Lm, where Lm denotes the m-th tensor power of L.
We then have the following

Definition 2.7. For any m ∈ N, the Spinc-Dirac operator Dm is defined in any local
orthonormal frame {ej}nj=1 of (TM, gTM) by the formula

Dm =
2n∑
j=1

c(ej)∇Λ(T ∗(0,1)M)⊗Lm

ej
: Ω0,∗(M,Lm) −→ Ω0,∗(M,Lm) ,

where ∇Λ(T ∗(0,1)M)⊗Lm
is the connection on Λ(T ∗(0,1)M) ⊗ Lm induced by ∇Λ(T ∗(0,1)M) and

∇Lm
.

By definition of the Clifford action (2.15), the Spinc-Dirac operator Dm interchanges
the space Ω0,+(M,Lm) ⊂ Ω0,∗(M,Lm) of even-degree forms with the space Ω0,−(M,Lm) ⊂
Ω0,∗(M,Lm) of odd-degree forms in the decomposition (2.14) of Λ(T ∗(0,1)M). We write D±

m

for the restriction of Dm to Ω0,±(M,Lm). On the other hand, as shown for instance in [25,
Lemma 1.3.4], Dm is a formally self-adjoint elliptic operator on Ω0,∗(M,Lm) with respect to
the L2-Hermitian product induced by gTM and hL. In particular, it has finite-dimensional
kernel inside Ω0,∗(M,Lm), which allows us to state the following definition.

Definition 2.8. For anym ∈ N, the Riemann-Roch number RR(M,Lm) ∈ N of the bundle
Lm over M is defined by the formula

RR(M,Lm) := dimKerD+
m − dimKerD−

m .

The standard invariance property of indices of elliptic operators with respect to deforma-
tions shows that these Riemann-Roch numbers do not depend on the choice of an almost
complex structure J nor on hL and ∇L satisfying the prequantization condition (1.2).

On the other hand, recall that the action of G preserves all additional data on M and
L by construction, so that there is an induced action of G on Ω0,∗(M,Lm) commuting
with Dm. In particular, this induces unitary representations of G on the finite dimensional
Hermitian vector spaces KerD+

m and KerD−
m. For any g ∈ G, we write

χ(m)(g) := TrKerD+
m
[g]− TrKerD−

m
[g] .

We write (KerD+
m)

G and (KerD−
m)

G for the subspaces of G-invariant vectors inside KerD+
m

and KerD−
m respectively.

Definition 2.9. For anym ∈ N, the G-invariant Riemann-Roch number RRG(M,Lm) ∈ N
of the bundle Lm over M is defined by the formula

RRG(M,Lm) := dim(KerD+
m)

G − dim(KerD−
m)

G .

Again by invariance of the index of elliptic operators, the G-invariant Riemann-Roch
number do not depend on the choice of a G-invariant almost complex structure J nor on
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the choice of G-invariant hL and ∇L satisfying the prequantization condition (1.2). Note
also that we have

RRG(M,Lm) =

∫
G

TrKerD+
m
[g] dg −

∫
G

TrKerD−
m
[g] dg =

∫
G

χ(m)(g) dg ,(2.16)

where dg is the normalized Haar volume form on G.

2.3. Equivariant characteristic forms and Riemann-Roch formulas. In the setting
of Section 2.2, and following [2, Definition 7.5], we define for any Hermitian vector bundle
(E, hE) → M to which the G-action lifts and which is equipped with a G-equivariant
Hermitian connection ∇E the associated moment map J E : M → End(E) ⊗ g∗ via the
Kostant formula

J E(X) := LX −∇E
X̃
, X ∈ g,

where LX denotes the Lie derivative with respect to X induced by the action of G on E.
Its equivariant curvature RE

g (X) ∈ Ω∗(M,End(E)) evaluated at X ∈ g is then given by
the formula

RE
g (X) := RE + 2πiJ E(X) ,

where RE denotes the curvature of ∇E. The associated equivariant Todd form is the
equivariantly closed form Tdg(E) ∈ Ω∗

G(M) defined for all X ∈ g by the formula

(2.17) Tdg(E,X) := det E

(
RE

g (X)/2πi

exp(RE
g (X)/2πi)− IdE

)
.

One readily checks that its cohomology class in Hω
G(M) does not depend on the choice of

a Hermitian metric hE and connection ∇E. In the important case of the tangent bundle
TM → M equipped with the chosen G-invariant compatible almost complex structure
J ∈ End(TX) over (M,ω), one can consider the induced Hermitian metric gTM given
by Formula (1.3) and the associated Levi-Civita connection ∇TM , which are both G-
equivariant. This induces a Hermitian metric and connection on T (1,0)M via the splitting
(2.13), and the associated equivariant Todd form Tdg(M) ∈ Ω∗

G(M) given by Tdg(M,X) :=
Tdg(T

(1,0)M,X) does not depend on the choice of the compatible almost complex structure,
and hence is an invariant of the Hamiltonian action of G on (M,ω). The closed form
Td(M) := Tdg(M, 0) ∈ Ω∗(M) is called the Todd form of M , and its cohomology class is
a symplectic invariant of (M,ω).
Recalling the prequantization condition (1.2), the equivariant Chern character of Lm is

the equivariantly closed form chg(L
m) ∈ Ω∗

G(M) defined for all m ∈ N and X ∈ g by the
formula

(2.18) chg(L
m, X) := exp(mω + 2πimJ (X)) .

The closed form ch(Lm) := chg(L
m, 0) = emω ∈ Ω∗(M) is called the Chern character of

Lm. We now have the following fundamental Kirillov formula, which we present in a guise
that can be found in [27, Theorem 3.1 and Remark (4) after Theorem 2.1].
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Theorem 2.10. [2, Theorem 8.2] For any m ∈ N and X ∈ g sufficiently close to 0, we
have

χ(m)(exp(X)) =

∫
M

Tdg(M,X) chg(L
m, X) .

This result can be seen as a consequence of the Berline-Vergne localization formula [3]
applied to the equivariant Atiyah-Segal-Singer index theorem. To state this last theorem,
consider for any g ∈ G the fixed point set

M g := {p ∈M | g · p = p} ⊂M ,

which is a smooth submanifold of M , and write ΣMg → M g for its normal bundle inside
TM . Let RΣMg ∈ Ω2(F,End(ΣMg)) be the curvature of the connection on ΣMg induced by
the Levi-Civita connection of gTM . The following form of the equivariant index theorem
can also be found in [27, Theorem 3.1 and Remark (4) after Theorem 2.1].

Theorem 2.11. [1] For any m ∈ N and g ∈ G, we have

χ(m)(g) =

∫
Mg

Td(M g) TrLm [g−1] exp(−mRL/2πi)

det ΣMg (1− g exp(RΣMg/2πi))
.

Note that either Theorems (2.10) and (2.11) immediately imply the classical Hirzebruch-
Riemann-Roch formula (1.5) for the usual Riemann-Roch numbers of Definition 2.8.

3. Geometry of the zero level set of the moment map

Let (M,ω) be a compact symplectic manifold of dimension 2n on which G = S1 acts in a
Hamiltonian fashion with moment map J :M → g∗ ≃ R. In this section, we will study the
geometry of J −1({0}) using a local normal form theorem for the S1-action, and introduce
corresponding retractions that will be needed later for the implementation of homotopy
arguments. We begin by introducing some general notation that will be frequently used.

Notation 3.1. We denote by F the set of all connected components of the fixed point set
MS1 ⊂ M . Given F ∈ F , we write J (F ) ∈ R for the constant value of the moment map
J :M → R on F . Furthermore, we introduce the following subsets of F :

F+ := {F ∈ F |J ≥ J (F ) near F}, F− := {F ∈ F |J ≤ J (F ) near F},
Fdef := F+ ∪ F−, Findef := F \ Fdef .

We say that F ∈ F is positive definite if F ∈ F+, negative definite if F ∈ F−, definite if
F ∈ Fdef and indefinite if F ∈ Findef . For the connected components F ∈ F in J −1({0})
satisfying J (F ) = 0 we set

F0 := {F ∈ F |F ⊂ J −1({0})}, F0
± := F0 ∩ F±, F0

def/indef := F0 ∩ Fdef/indef .
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3.1. Local normal form theorem. Let F ∈ F and note that F is a symplectic sub-
manifold of M . When considering a fiber bundle over F with total space E, we will use
the notation νE : E → F for its bundle projection. Let νΣF

: ΣF → F be the symplectic
normal bundle of F inside TM , so that we have a decomposition

(3.1) (TM,ω)|F = (TF, ωF )⊕ (ΣF , ω
⊥)

into symplectic vector bundles, where ωF := inc∗F ω ∈ Ω2(F ) and ω⊥ is the fibrewise
restriction of ω to ΣF . Note that the action of S1 on (M,ω) induces a fiberwise action on
ΣF , and choose an S1-invariant compatible complex structure JΣF

∈ End(ΣF ) on (ΣF , ω
⊥).

The Formula (1.3) then induces a Hermitian metric gΣF
:= ω⊥(·, JΣF

·) on the complex
bundle (ΣF , JΣF

), making ΣF into a Hermitian vector bundle over F . For any k ∈ N and
under the identification (2.6) we write

Σ
(k)
F :=

{
v ∈ ΣF

∣∣ exp(X) · v = e2πikxv for all X ∈ g
}

for the associated isotypic component, as well asW := {k ∈ Z | Σ(k)
F ̸= 0} ⊂ Z for the set of

weights, which is finite and does not contain 0 by definition of ΣF , and let ℓ
(k)
F := rkCΣ

(k)
F

be the complex rank of the vector bundle Σ
(k)
F . We thus have a finite decomposition

(3.2) ΣF =:
⊕
k∈W

Σ
(k)
F

into hermitian subbundles, with associated structure group

KF :=
∏
k∈W

U
(
ℓ
(k)
F

)
,

so that there is a principal KF -bundle νPF
: PF → F satisfying

(3.3) ΣF
∼= PF ×KF

⊕
k∈W

Cℓ
(k)
F ,

and inducing the decomposition (3.2), whereKF acts linearly on
⊕

k∈W Cℓ
(k)
F . The diagonal

action of S1 on
⊕

k∈W Cℓ
(k)
F of weight k ∈ W on each summand Cℓ

(k)
F commutes with the

action of KF , inducing an S1-action on the right-hand side of (3.3), which makes it an
S1-equivariant identification. Note also that the symplectic structure on ΣF is induced

by the standard complex structure on each Cℓ
(k)
F via this decomposition. In what follows,

we will write W± := {w ∈ W | ± w ∈ N} for the sets of positive and negative weights,
respectively, so that by (3.2) there is a decomposition

(3.4) ΣF = Σ+
F ⊕ Σ−

F ,

where Σ±
F :=

⊕
k∈W±

Σ
(k)
F . Setting ℓ±F := rkCΣ

±
F =

∑
k∈W±

ℓ
(k)
F , the decomposition (3.4) is

induced by the natural embedding KF ⊂ U(ℓ+F ) × U(ℓ−F ). We write Cℓ±F =
⊕

k∈W±
Cℓ

(k)
F

and set ℓF := rkC ΣF .
Let ωΣF

be a symplectic form on a neighborhood VF of the zero section in ΣF such that its
restriction to the fibers of ΣF coincides with the standard symplectic form induced by ω⊥,
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while the restriction (TΣF , ωΣF
)|F to the zero section F ⊂ ΣF coincides with (TM,ω)|F

via the natural identification of TM with TΣF over F . The next proposition gives a
canonical description of the moment map J : M → R in a neighborhood of each F ∈ F ,
and constitutes the basis for the computations of the next sections. It is a straightforward
consequence of the equivariant Darboux lemma, as explained for instance in [13, Section
2.2].

Proposition 3.2 (Local normal form theorem). For each F ∈ F there is an S1-
equivariant symplectomorphism ΦF : VF → UF from the open tubular neighborhood (VF , ωΣF

)
of the zero section in ΣF onto an open neighborhood UF ⊂ (M,ω) of F , such that

J ◦ ΦF ([℘,w]) =
1

2
QF (w) + J (F ), for all [℘,w] ∈ ΣF

∼= PF ×KF

⊕
k∈W

Cℓ
(k)
F ,

where QF is the KF -invariant quadratic form on
⊕

k∈W Cℓ
(k)
F defined by

(3.5) QF (w) :=
∑
k∈W

k ∥πk(w)∥2 .

Following Notation 3.1, a connected component F ∈ F is positive definite, negative
definite or indefinite if and only if the quadratic form QF from Proposition 3.2 is positive
definite, negative definite or indefinite, respectively. We write

(3.6) ZF := {[℘,w] ∈ ΣF |w ̸= 0 and QF (w) = 0} ⊂ ΣF

for the submanifold formed fiberwise by the smooth points of the 0-level set of the quadratic
form QF . Recalling the stratification (1.7), the set ZF then corresponds to the regular
stratum of J−1({0}) in the local normal coordinates of Proposition 3.2, since

(3.7) ΦF (VF ∩ ZF ) = UF ∩ J −1({0})reg.

3.2. Local model. In this section, we introduce for each F ∈ F coordinates on
⊕

k∈W Cℓ
(k)
F

with respect to the zero level set of the quadric QF , which will be extended in Section 3.3
to the symplectic normal bundle using the framework of the previous section. We will

consider
⊕

k∈W Cℓ
(k)
F as equipped with the diagonal S1-action of weight k ∈ W on each

summand Cℓ
(k)
F . To begin, we define the sets

Cℓ±F
• := Cℓ±F \ {0}, in case ℓ±F > 0, ℓ∓F = 0,

Cℓ+F ,ℓ
−
F

•• := (Cℓ+F \ {0})× (Cℓ−F \ {0}), in case ℓ+F , ℓ
−
F > 0.

(3.8)

Further, for any k0 ∈ W we write

πk0 :
⊕
k∈W

Cℓ
(k)
F → Cℓ

(k0)
F

for the canonical projection, and introduce the weighted Euclidean norms

(3.9) ∥w∥2F± := ±
∑
k∈W±

k ∥πk(w)∥2 , for all w ∈ Cℓ±F =
⊕
k∈W±

Cℓ
(k)
F .
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We then introduce the ellipsoids

(3.10) S
2ℓ±F−1
± :=

{
w ∈ Cℓ±F | ∥w∥F± = 1

}
, when ℓ±F > 0 ,

Note that the norms ∥·∥F± are both S1- and KF -invariant. The quadratic form QF from
(3.5) can be written in norm notation as

QF (w) =
∥∥w+

∥∥2
F+

−
∥∥w−∥∥2

F− , for all w = (w+, w−) ∈ Cℓ+F+ℓ−F .

Later, it will also be convenient to consider the weighted Hermitian norm

(3.11) ∥w∥2F :=
∥∥w+

∥∥2
F+

+
∥∥w−∥∥2

F− , for all w = (w+, w−) ∈ Cℓ+F+ℓ−F .

Next, for each weight k ∈ W , we introduce the following standard symplectic and angular

forms over Cℓ
(k)
F for any w = (w′

1 + iw′′
1 , · · · , w′

ℓ
(k)
F

+ iw′′
ℓ
(k)
F

) ∈ Cℓ
(k)
F by setting

(3.12) ω(k)|w :=

ℓ
(k)
F∑
j=1

dw′
j ∧ dw′′

j , α(k)|w :=

ℓ
(k)
F∑
j=1

w′
j dw

′′
j − w′′

j dw
′
j .

They are related by ω(k) =
1
2
dα(k). For any X ∈ g inducing the fundamental vector field

X̃ ∈ C∞(Cℓ
(k)
F , TCℓ

(k)
F ) associated with the S1-action on Cℓ

(k)
F of weight k ∈ W we then get

(3.13) (X̃ ⌟ α(k))|w = k x ∥w∥2 , for all w ∈ Cℓ
(k)
F ,

where x ∈ R is the image of X ∈ g via the identification (2.6). If we now introduce the
1-forms

(3.14) α± := ±
∑
k∈W±

π∗
kα(k) ∈ Ω1(Cℓ±F ,R)) ,

then (3.13) and (3.9) imply that the 1-forms defined by

(3.15) θ±|w :=
α±|w
∥w∥2F±

, if w ∈ Cℓ±F
• ,

(3.16) θ|w :=
1

2

(
α+|w
∥w∥2F+

+
α−|w
∥w∥2F−

)
, if w ∈ Cℓ+F ,ℓ

−
F

•• ,

are connection forms in the sense of Formula (2.8) for the diagonal S1-action of weight

k ∈ W on the k-th summand on Cℓ±F
• and Cℓ+F ,ℓ

−
F

•• respectively defined in (3.8).
The following simple lemma will be crucial for all our local and global considerations.

Recall the general notation for inclusions and projections introduced at the beginning of
Section 2.
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Lemma 3.3. Let S ⊂
⊕

k∈W Cℓ
(k)
F be an embedded smooth submanifold, f : (0,∞) →

(0,∞) a smooth function, and consider the smooth map ΨS,f : S × (0,∞) →
⊕

k∈W Cℓ
(k)
F ,

(w, r) 7→ f(r)w. Then one has for each k ∈ W

Ψ∗
S,f (π

∗
kα(k)) = f(r)2 pr∗Sinc

∗
S(π

∗
kα(k)) .

Proof. Let v ∈ Ty(S × (0,∞)) be a tangent vector at y := (w, r) ∈ S × (0,∞) and
γv(t) = (w(t), r(t)) a smooth curve with γ̇v(0) = v, γv(0) = y. Identifying Ty(S × (0,∞))

with a subspace of
⊕

k∈W Cℓ
(k)
F × R we get

(ΨS,f )∗(v) =
d

dt
(f(r(t))w(t))|t=0 =

d

dt
f(r(t))|t=0w + f(r)ẇ(0),

so that with the identification wj ≡ w′
j ∂w′

j
+w′′

j ∂w′′
j
in the notation of (3.12) we obtain

Ψ∗
S,f (π

∗
kα(k))|y(v) =

d

dt
f(r(t))|t=0 (w

′
jdw

′′
j − w′′

j dw
′
j)|ΨS,f (y)(w)︸ ︷︷ ︸

=0

+f(r)(w′
jdw

′′
j − w′′

j dw
′
j)|ΨS,f (y)(ẇ(0))

= f(r)2 pr∗Sinc
∗
Sπ

∗
kα(k)|y(v).

□

We will now proceed with separate treatments of the cases ℓ+F , ℓ
−
F > 0 and ℓ+F ℓ

−
F = 0, in

which QF is indefinite and definite, respectively.

3.2.1. Definite case. Let us begin with the easier definite case F ∈ Fdef , so that either
ℓ−F = 0 or ℓ+F = 0, and write ℓF := ℓ+F > 0 if F ∈ F+ and ℓF := ℓ−F > 0 if F ∈ F−. The

diagonal action of S1 on CℓF =
⊕

k∈W Cℓ
(k)
F considered in Section 3.1 restricts to a locally

free action on S2ℓF−1, and we introduce the connection form

(3.17) Θ := inc∗
S2ℓF−1θ ∈ Ω1(S2ℓF−1,R)

as the restriction of (3.15) to S2ℓF−1.
We now introduce spherical polar coordinates in CℓF

• via the diffeomorphism

Ψ : S2ℓF−1 × (0,∞) −→ CℓF
•

(w, r) 7−→ rw ,
(3.18)

which is equivariant for the action of S1 introduced above on the first factor and the trivial
action on the second factor of S2ℓF−1 × (0,∞). It defines on CℓF

• the radial coordinate

(3.19) r = ∥w∥F =
√

|QF (w)|, for all w ∈ CℓF
• ,

which is related to the quadratic form QF by

(3.20) QF |CℓF
•

= ±r2 if F ∈ F±.

Applying Lemma 3.3 to S = S2ℓF−1 and f = id one immediately sees that

Ψ∗(α±) = r2 pr∗
S2ℓF−1 inc

∗
S2ℓF−1α

± .
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Since ωstd = ±1
2
dθ and Θ = inc∗

S2ℓF−1θ, we deduce from this the useful identity

Ψ∗(ωstd|CℓF
•
) = ±1

2
d(r2 pr∗

S2ℓF−1Θ) = ±r dr ∧ pr∗
S2ℓF−1Θ± 1

2
r2 pr∗

S2ℓF−1dΘ if F ∈ F±.

(3.21)

3.2.2. Indefinite case. Let us now turn to the case F ∈ Findef , so that ℓ
+
F , ℓ

−
F > 0. Departing

from the quadric formed by the zero level set of QF we define the slit quadric

(3.22) Q× := Q−1
F ({0}) \ {0} ⊂ Cℓ+F ,ℓ

−
F

•• ,

which is a smooth submanifold of the set Cℓ+F ,ℓ
−
F

•• defined in (3.8). The diagonal action of

S1 on CℓF =
⊕

k∈W Cℓ
(k)
F considered in Section 3.1 restricts to locally free S1-actions on

Q× ⊂ Cℓ+F ,ℓ
−
F

•• and the product of ellipsoids

(3.23) S
2ℓ+F−1
+ × S

2ℓ−F−1
− ⊂ Cℓ+F+ℓ−F = Cℓ+F ⊕ Cℓ−F

of the ellipsoids (3.10). Besides the connection form (3.16) we introduce now also the
1-form

(3.24) θ̄|w :=
1

2

(
α+|w
∥w∥2F+

− α−|w
∥w∥2F−

)

on Cℓ+F ,ℓ
−
F

•• , and introduce the corresponding restrictions

(3.25) Θ := inc∗
S
2ℓ+

F
−1

+ ×S
2ℓ−

F
−1

−

θ, Θ := inc∗
S
2ℓ+

F
−1

+ ×S
2ℓ−

F
−1

−

θ̄

to S
2ℓ+F−1
+ × S

2ℓ−F−1
− . Clearly, Θ ∈ Ω1(S

2ℓ+F−1
+ × S

2ℓ−F−1
− ,R) is a connection for the S1-action

on S
2ℓ+F−1
+ × S

2ℓ−F−1
− . On the other hand, the 1-form Θ ∈ Ω1(S

2ℓ+F−1
+ × S

2ℓ−F−1
− ,R) is basic in

the sense of Proposition 2.4.

Let us now introduce polar moment coordinates in Cℓ+F ,ℓ
−
F

•• via the diffeomorphism

Ψ : S
2ℓ+F−1
+ × S

2ℓ−F−1
− × (0,∞)× R −→ Cℓ+F ,ℓ

−
F

•• ,

(w+, w−, r, q) 7−→
(√√

r4 + q2 + q w+,

√√
r4 + q2 − q w−

)
.

(3.26)

The map Ψ is at the basis of our local model. It is equivariant under the action of S1

introduced above on S
2ℓ+F−1
+ × S

2ℓ−F−1
− and the trivial action on (0,∞)× R, and defines for

w ∈ Cℓ+F ,ℓ
−
F

•• the coordinates

(3.27) r =
√

∥w+∥F+ ∥w−∥F−, q =
1

2
QF (w).
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The slit quadric Q× ⊂ Cℓ+F ,ℓ
−
F

•• defined in (3.22) corresponds to the set {q = 0}, while the
coordinate r is radial on Q×. Moreover, composing the retraction

retQ× : Cℓ+F ,ℓ
−
F

•• −→ Q×,

w = (w+, w−) 7−→
√
∥w+∥F+ ∥w−∥F−

( w+

∥w+∥F+

,
w−

∥w−∥F−

)(3.28)

with Ψ gives us an S1-equivariant surjection

πQ× : S
2ℓ+F−1
+ × S

2ℓ−F−1
− × (0,∞)× R −→ Q×,

(w+, w−, r, q) 7−→ Ψ(w+, w−, r, 0) = (rw+, rw−).
(3.29)

Let pr
S
2ℓ+

F
−1

+ ×S
2ℓ−

F
−1

−

: S
2ℓ+F−1
+ × S

2ℓ−F−1
− × (0,∞) × R −→ S

2ℓ+F−1
+ × S

2ℓ−F−1
− be the canonical

projection. We then have

Lemma 3.4. Write α := 1
2
(α++α−) and α := 1

2
(α+−α−). In the coordinates (3.27), one

has

Ψ∗(α|
C
ℓ+
F

,ℓ−
F

••
) =

√
r4 + q2 pr∗

S
2ℓ+

F
−1

+ ×S
2ℓ−

F
−1

−

Θ+ q pr∗
S
2ℓ+

F
−1

+ ×S
2ℓ−

F
−1

−

Θ,

Ψ∗(α|
C
ℓ+
F

,ℓ−
F

••
) =

√
r4 + q2 pr∗

S
2ℓ+

F
−1

+ ×S
2ℓ−

F
−1

−

Θ+ q pr∗
S
2ℓ+

F
−1

+ ×S
2ℓ−

F
−1

−

Θ .

Proof. Consider Ψ and pr
S
2ℓ+

F
−1

+ ×S
2ℓ−

F
−1

−

as families of maps defined on S
2ℓ+F−1
+ × S

2ℓ−F−1
− ×

(0,∞) and parametrized by q ∈ R. Defining f±
q : (0,∞) → (0,∞) by f±

q (r) :=
√√

r4 + q2 ± q,

we can apply Lemma 3.3 with S = S
2ℓ+F−1
+ × S

2ℓ−F−1
− and f = f±

q to get

Ψ∗(α±|
C
ℓ+
F

,ℓ−
F

••
) = f±

q (r)
2pr∗

S
2ℓ+

F
−1

+ ×S
2ℓ−

F
−1

−

inc∗
S
2ℓ+

F
−1

+ ×S
2ℓ−

F
−1

−

α± ,

concluding the proof. □

A direct consequence of Lemma 3.4 is the following indefinite version of (3.21).

Corollary 3.5. In the coordinates (3.26) one has

Ψ∗(ωstd|
C
ℓ+
F

,ℓ−
F

••
) = π∗

Q× inc
∗
Q×ωstd+d

(
q pr∗

S
2ℓ+

F
−1

+ ×S
2ℓ−

F
−1

−

Θ+
(√

r4 + q2−r2
)
pr∗
S
2ℓ+

F
−1

+ ×S
2ℓ−

F
−1

−

Θ
)
.

Proof. As ωstd = dᾱ, we apply d on both sides of the equation in Lemma 3.4 involving ᾱ,
yielding

Ψ∗(ωstd|
C
ℓ+
F

,ℓ−
F

••
) = d

(
q pr∗

S
2ℓ+

F
−1

+ ×S
2ℓ−

F
−1

−

Θ+
√
r4 + q2pr∗

S
2ℓ+

F
−1

+ ×S
2ℓ−

F
−1

−

Θ
)
.

We now assert that

(3.30) π∗
Q× inc

∗
Q×ωstd = d

(
r2pr∗

S
2ℓ+

F
−1

+ ×S
2ℓ−

F
−1

−

Θ
)
.
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Indeed, since Θ = inc∗
S
2ℓ+

F
−1

+ ×S
2ℓ−

F
−1

−

ᾱ, this is a consequence of the relation

π∗
Q× inc

∗
Q×ᾱ = r2 pr∗

S
2ℓ+

F
−1

+ ×S
2ℓ−

F
−1

−

inc∗
S
2ℓ+

F
−1

+ ×S
2ℓ−

F
−1

−

ᾱ

which follows from Lemma 3.3 applied with S = S
2ℓ+F−1
+ × S

2ℓ−F−1
− , f = id, and q ∈ R as an

additional parameter. □

3.3. Application to the symplectic normal bundle. We now translate the fiberwise
considerations from Section 3.2 into global statements on the symplectic normal bundle

ΣF , identified with the associated bundle PF ×KF

⊕
k∈W Cℓ

(k)
F as in (3.3).

Choose a KF -connection on the principal bundle νPF
: PF → F , inducing a Hermitian

connection ∇ΣF on ΣF that preserves the decomposition (3.2). This provides us with a
splitting of the short exact sequence

0 −→ ν∗ΣF
ΣF −→ TΣF −→ ν∗ΣF

TF −→ 0

of vector bundles over ΣF , yielding the global decomposition

(3.31) TΣF
∼= T horF ⊕ ν∗ΣF

ΣF ,

where T horF ≃ ν∗ΣF
TF is the horizontal distribution defined by ∇ΣF and ν∗ΣF

ΣF ⊂ TΣF is
the vertical tangent bundle to the fibers. Choose a compatible almost complex structure
JF ∈ End(TF ) over (F, ωF ). Together with the natural complex structure JΣF

∈ End(ΣF ),
this induces via the decomposition (3.31) an S1-invariant almost complex structure J ∈
End(TΣF ) over the total space of ΣF .

For any k0 ∈ W , we define fk0 ∈ C∞(ΣF ,R) by setting

(3.32) fk0([℘,w]) :=
1

2
∥πk0(w)∥

2 , for all [℘,w] ∈ PF ×KF

⊕
k∈W

Cℓ
(k)
F ,

where ∥·∥ denotes the standard Hermitian norm. Note that fk0 is well-defined since for each

k ∈ W the structure group KF acts by U(ℓ
(k)
F ) on Cℓ

(k)
F and thus preserves the Hermitian

norm. Using this, we define the 1-form αk0 ∈ Ω1(ΣF ,R) by

(3.33) αk0(v) := −dfk0(Jv), for all v ∈ TΣF .

Comparing with (3.12), one readily checks that for any p ∈ F the restriction of αk0 ∈
Ω1(ΣF ,R) to the fiber (ΣF )p ⊂ ΣF , seen as a submanifold in the total space of ΣF ,
satisfies

(3.34) αk0|(ΣF )p = π∗
k0
α(k0) ,

in any trivialization (ΣF )p ≃
⊕

k∈W Cℓ
(k)
F compatible with the KF -principal bundle struc-

ture (3.3). Following (3.14), (3.15) and (3.16), we write

(3.35) α±
F := ±

∑
k∈W±

αk ,
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so that the 1-forms given by

(3.36) θ±F |[℘,w] :=
α±
F |[℘,w]

∥w∥2F±
for [℘,w] ∈ PF ×KF

Cℓ±F
• ,

(3.37) θF |[℘,w] :=
1

2

(
α+
F |[℘,w]

∥w∥2F+

+
α−
F |[℘,w]

∥w∥2F−

)
for [℘,w] ∈ PF ×KF

Cℓ+F ,ℓ
−
F

•• ,

define connections for the S1-action on PF ×KF
Cℓ±F

• and PF ×KF
Cℓ+F ,ℓ

−
F

•• , respectively, such
that for all p ∈ F the restriction of θ±F , θF to the fiber over p coincides with θ±, θ in

any trivialization (ΣF )p ≃
⊕

k∈W Cℓ
(k)
F compatible with the KF -principal bundle structure

(3.3). We also define the vertical form ωvert ∈ Ω2(ΣF ,R) by

(3.38) ωvert :=
1

2

∑
k∈W

dαk .

Comparing with (3.12) and (3.34), for all p ∈ F the restriction of ωvert ∈ Ω2(ΣF ,R) to the
fiber (ΣF )p ⊂ ΣF satisfies

(3.39) ωvert|(ΣF )p = ωstd ,

in any trivialization (ΣF )p ≃
⊕

k∈W Cℓ
(k)
F compatible with the KF -principal bundle struc-

ture (3.3), where ωstd is the standard symplectic form on
⊕

k∈W Cℓ
(k)
F induced by (3.12) for

each k ∈ W . Furthermore, note that the restriction TΣF |F over the zero section F ⊂ ΣF

naturally identifies with the restriction TM |F over F ⊂ M , and the restriction of ωvert

to TΣF |F coincides with ω⊥ in the decomposition (3.1). Consequently, we can explicitly
choose the symplectic form ωΣF

from Proposition 3.2 to be given by

(3.40) ωΣF
:= ωvert + ν∗ΣF

ωF ∈ Ω2(ΣF ,R).

By construction, the almost complex structure J ∈ End(TΣF ) over ΣF is compatible with
ωΣF

, and we write gTΣF := ωΣF
(·, J ·) for the induced S1-invariant Riemannian metric over

VF .

3.3.1. Definite case. Let F ∈ Fdef . Recall the definition of ℓF from the beginning of Section
3.2.1. As the linear action of KF on CℓF preserves S2ℓF−1, we can consider the associated
sphere bundle SF := PF ×KF

S2ℓF−1 inside ΣF = PF ×KF
CℓF , with bundle projection

νSF
: SF → F . The S1-action on ΣF restricts to a locally free S1-action on SF for which

we have the connection

(3.41) ΘSF
:= inc∗SF

θF

given by restriction of the connection θF from (3.36). Using (3.8) to define the subbundle

ΣF• := PF ×KF
CℓF

• = ΣF \ F,
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the S1-equivariant diffeomorphism Ψ from (3.18) globalizes to an S1-equivariant diffeomor-
phism

ΨF : SF × (0,∞) −→ ΣF•

([℘,w], r) 7−→ [℘,Ψ(w, r)] ,
(3.42)

where S1 acts on SF × (0,∞) by the product of the S1-action on SF and the trivial action
on (0,∞). ΨF promotes the coordinate r from (3.19) to a global fiber-radial coordinate r
on the bundle ΣF•. Its relation to QF is given by (3.20) with CℓF

• replaced by ΣF•. Note
that SF × (0,∞) is a fiber bundle over F with the projection νSF×(0,∞) := νSF

◦ prSF
. We

state the global version of (3.21) in

Corollary 3.6. In the coordinate (3.19) provided by the diffeomorphism (3.42) we have

Ψ∗
F (ωΣF

|ΣF•) = ν∗SF×(0,∞)ωF ± d
(r2
2
pr∗SF

ΘSF

)
if F ∈ F±.

Proof. In view of the definition (3.41) of ΘSF
and the definition (3.42) of ΨF the assertion

follows from (3.40), (3.21), and (3.39). □

For a better overview, we illustrate the maps appearing in Corollary 3.6 in the diagram

ΣF• SF × (0,∞)

SF

F

∼=
ΨF

incSF

prSF

νSF×(0,∞)

νSF

νΣF•

(3.43)

in which everything commutes except the triangle formed by prSF
, incSF

, and ΨF , which
commutes only up to S1-equivariant homotopy.

3.3.2. Indefinite case. Let F ∈ Findef . As the linear action of KF on Cℓ+F+ℓ−F preserves the
bi-ellipsoid (3.23), we can consider the associated fiber bundle

(3.44) SF := PF ×KF
(S

2ℓ+F−1
+ × S

2ℓ−F−1
− )

inside ΣF
∼= PF ×KF

Cℓ+F+ℓ−F . Furthermore, the 0-level set ZF ⊂ ΣF \ F defined in (3.6)
has the fiber bundle structure

(3.45) ZF ∼= PF ×KF
Q×

associated with the slit quadric (3.22). Recall that we write νSF
: SF → F and νZF

:
ZF → F for the fiber bundle projections. The action of S1 on ΣF restricts to locally free
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S1-actions on SF and ZF , respectively, and we set

ΘSF
:= inc∗SF

θF =
1

2
(Θ+

SF
+Θ−

SF
), ΘSF

:=
1

2
(Θ+

SF
−Θ−

SF
), with Θ±

SF
:= inc∗SF

θ±F ,

(3.46)

(3.47)

ΘZF
:= inc∗ZF

θF =
1

2
(Θ+

ZF
+Θ−

ZF
), ΘZF

:=
1

2
(Θ+

ZF
−Θ−

ZF
), with Θ±

ZF
:= inc∗ZF

θ±F ,

where θF is the connection form on ΣF \F from (3.37) and the 1-forms αk were defined in
(3.33). Thus, ΘSF

and ΘZF
are connections for the S1-actions on SF and ZF , respectively.

On the other hand, ΘSF
and ΘZF

are basic differential forms in the sense of Proposition
2.4. Using (3.8) to define the subbundle

ΣF•• := PF ×KF
Cℓ+F ,ℓ

−
F

•• ,

the S1-equivariant diffeomorphism Ψ from (3.26) globalizes to an S1-equivariant diffeomor-
phism

ΨF : SF × (0,∞)× R −→ ΣF••

([℘,w], r, q) 7−→ [℘,Ψ(w, r, q)],
(3.48)

where S1 acts on SF×(0,∞)×R by the product of the S1-action on SF and the trivial action
on (0,∞)×R. The map ΨF defines coordinates (3.27) on ΣF••, in which ZF coincides with
{q = 0}. The retraction retQ× from (3.28) and the surjection πQ× from (3.29) globalize
to an S1-equivariant retraction and an S1-equivariant surjection onto ZF , respectively, by
defining

retZF
: ΣF•• −→ ZF

[℘,w] 7−→ [℘, retQ×(w)],
(3.49)

as well as

πZF
:= retZF

◦ΨF : SF × (0,∞)× R −→ ZF ,

([℘,w], r, q) 7−→ [℘, πQ×(w, r, q)] = ΨF ([℘,w], r, 0) = [℘, rw].

The restricted diffeomorphism

(3.50) ΨF : SF × (0,∞)× {0} −→ ZF ,

denoted again just by ΨF for simplicity, provides the radial coordinate r on ZF . Note that
the space SF × (0,∞), which we identify canonically with SF × (0,∞) × {0}, as well as
the space SF × (0,∞) × R, are fiber bundles over F with the corresponding projections
νSF×(0,∞), νSF×(0,∞)×R given by the composition of νSF

with the canonical projections onto
SF , respectively. These constructions lead us to the following
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Corollary 3.7. In the coordinates (3.27) defined by the diffeomorphism (3.48) one has

Ψ∗
F (ωΣF

|ΣF••) = π∗
ZF

inc∗ZF
ωΣF

+ d
(
q pr∗SF

ΘSF
+
(√

r4 + q2 − r2
)
pr∗SF

ΘSF

)
.

Proof. By the definition of ωΣF
in (3.40) and (3.39) the proof is a straightforward conse-

quence of Corollary 3.5. □

For an overview, the maps introduced above, and in particular those involved in Corollary
3.7, are illustrated in the diagram

ΣF••

ZF

SF × (0,∞)× R

F

SF × (0,∞)× {0} ∼= SF × (0,∞)

SF

∼=
ΨF

∼=
ΨF

incSF

incZF
incSF×(0,∞)×{0}πZF

retZF

prSF×(0,∞)

prSF

prSF

νSF×(0,∞)×R

νSF

νZF

νΣF•• νSF×(0,∞)

(3.51)

This is the indefinite version of (3.43). In the diagram, everything commutes except the
triangles involving an inclusion followed by the retraction retZF

, a projection, or the surjec-
tion πZF

, which commute only up to S1-equivariant homotopy. Note that the two canonical
projections onto SF are both denoted by prSF

, whereas each fiber bundle projection onto
F has its own name.

4. Kirwan maps

In the setting of Section 2.1, let (M,ω,J ) be a Hamiltonian S1-manifold such that the
restriction of the S1-action to J −1({0}) is locally free, and write inc0 : J −1({0}) → M
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for the inclusion map. The following classical notion goes back to Kirwan [20], which we
introduce here only for G = S1.

Proposition 4.1. [16, (18)] Assume that S1 acts locally freely on the level set J −1({0}) ⊂
M , and let Θ ∈ Ω1(J −1({0}),R) be a connection for the S1-action. Then, for any σ(x) ∈
Ω∗
S1(M)

(4.1) κ(σ(X)) := inc∗0 σ
( i
2π
dΘ
)
− i

2π
Θ ∧

(
X̃ ⌟ inc∗0 σ

( i
2π
dΘ
))

defines a map of complexes κ : (Ω∗
S1(M), dg) → (Ω(J −1({0}))S1

bas, d), inducing via the
isomorphism of Proposition 2.4 a morphism

(4.2) κ : Hω
S1(M) −→ H(M0) ,

which does not depend on the choice of the connection Θ ∈ Ω1(J −1({0}),R). The mor-
phism κ is called the Kirwan map.

The notation inc∗0 σ(
i
2π
dΘ) ∈ Ω∗(J −1({0}),R) means that we substitute i

2π
dΘ for X in

inc∗0 σ(X), taking the wedge product with the coefficients of the power series inc∗0 σ(X).

4.1. Regular Kirwan map of a singular symplectic quotient. Let now (M,ω,J ) be
a general Hamiltonian S1-manifold, so that the symplectic quotient (1.1) is only a stratified
space. To introduce the regular Kirwan maps appearing in Theorem 1.1, we will need the
following definition.

Definition 4.2. A connection Θ ∈ Ω1(J −1({0})reg,R) for the S1-action on J −1({0})reg is
said to have normal form near the singularities if for each F ∈ F0

indef one has

Φ∗
F (Θ|UF∩J−1({0})reg) = ΘZF

|VF∩ZF
,

where UF ⊂M is a neighborhood of F as in Proposition 3.2 and ΘZF
∈ Ω1(ZF ,R) denotes

the connection form (3.47) over ZF ⊂ ΣF via (3.7).

Using a partition of unity, one readily constructs a connection with normal form near
all F ∈ F0

indef .

Definition 4.3. The regular Kirwan map is the map of complexes

(4.3) κ : (Ωω
S1(M), dg) −→ (Ω(M reg

0 ), d)

defined by the restriction of the formula (4.1) to the regular stratum J −1({0})reg of the
stratification (1.7) and using a connection Θ ∈ Ω1(J −1({0})reg,R) with normal form near
the singularities in the sense of Definition 4.2.

The following result will be used in a crucial way in Section 5.4 to establish Theorem 5.7
on the topological interpretation of the asymptotics of the Witten integral, which forms
the core of the proof of Theorem 1.1.
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Lemma 4.4. Let σ ∈ Ω∗
S1(M) be such that for every F ∈ F0

indef we have inc∗F σ ≡ 0. Then
for all m ∈ N, we have

(4.4)

∫
M reg

0

emω0κ(dgσ) = 0 ,

where κ : Ω∗
S1(M) → Ω(M reg

0 ) denotes the Kirwan map (4.3).

Proof. Let F ∈ F0
indef. Recall from (3.7) that the diffeomorphism ΦF of the local normal

form of Proposition 3.2 sends ZF ∩ VF to J −1({0})reg ∩UF , where ZF = Q−1
F ({0}) \F has

been introduced in Equation (3.6). Keeping in mind the coordinates (3.27), for any small
enough ε > 0 let BF,ε ⊂ J −1({0}) ∩ UF be the neighborhood of F defined by

BF,ε :=

{
x ∈ J −1({0})

∣∣∣∣ Φ−1
F (x) = [℘,w] with

√
∥w+∥F+ ∥w−∥F− < ε

}
.

Let Θ ∈ Ω1(J −1({0})reg,R) be a connection for the S1-action whose restriction to J −1({0})reg∩
UF pulls back along ΦF to the connection ΘZF

∈ Ω1(ZF ,R) introduced in (3.47), and write
σF := inc∗F σ ∈ Ω∗

S1(F ), as well as inc0 : J −1({0}) →M for the inclusion map.
Using Proposition 2.6 and the fact that the Kirwan map (4.3) is a map of complexes we

can now apply the usual Stokes’ theorem to get∫
M reg

0

emω0κ(dgσ) =

∫
J−1({0})reg

em inc∗0 ωdκ(σ) ∧Θ

= lim
ε→0

∫
J−1({0})\

⋃
F∈F0

indef
BF,ε

em inc∗0 ωdκ(σ) ∧Θ

=
∑

F∈F0
indef

lim
ε→0

∫
∂BF,ε

em inc∗0 ωκ(σ) ∧Θ

− lim
ε→0

∫
J−1({0})\

⋃
F∈F0

indef
BF,ε

em inc∗0 ωκ(σ) ∧ dΘ

=
∑

F∈F0
indef

lim
ε→0

∫
∂BF,ε

em inc∗0 ω0 inc∗0 σ
( i
2π
dΘ
)
∧Θ,

where the second term of the third line vanishes since the integrand is basic for the S1-
action and therefore its top form component is zero. Next, we define for all small enough
ε > 0 the diffeomorphism

b̃F,ε : SF −→ Φ−1
F (∂BF,ε) = ΨF (SF × {ε} × {0}) ⊂ ZF ⊂ ΣF ,

p = [℘,w] 7−→ ΨF (p, ε, 0) = [℘, εw]
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analogous to (5.31) using the diffeomorphism ΨF from (3.48), and we pull back along

ΦF ◦ b̃F,ε to get

(4.5)

∫
M reg

0

emω0κ(dgσ) =
∑

F∈F0
indef

lim
ε→0

∫
SF

emb̃
∗
F,εωΣF b̃∗F,εΦ

∗
Fσ|UF

( i
2π
db̃∗F,εΘZF

)
∧ b̃∗F,εΘZF

.

We now investigate each of the three pullbacks along b̃F,ε on the right-hand side. From
(3.38), (3.33) and (3.32) we get as in (5.33)

(4.6) b̃∗F,εωΣF
= ε2inc∗SF

ωvert + ν∗SF
ωF .

Similarly, (3.47) implies

(4.7) b̃∗F,εΘZF
= ΘSF

.

Furthermore, we claim that for any differential form α ∈ Ω∗(M) we have

(4.8) lim
ε→0

b̃∗F,εΦ
∗
Fα|UF

= ν∗SF
αF in Ω∗(SF ),

where we write αF := inc∗F α ∈ Ω∗(F ) and we use on Ω∗(SF ) the standard Fréchet topology
of uniform convergence of all derivatives, recalling that SF is compact. To prove the claim,
we first note that it is enough to prove (4.8) when α ∈ Ω0(M) = C∞(M) is a smooth
function and the convergence takes place in the Fréchet subspace C∞(SF ) ⊂ Ω∗(SF ),
since (4.8) is a local formula involving pullbacks which commute with wedge products
and the exterior differential d, which is a continuous operator Ω∗(SF ) → Ω∗(SF ), and any
differential form of positive degree can locally be written as a sum of wedge products of
differentials of smooth functions. Now, by passing to a local trivialization of the fiber
bundle ΣF over a local chart of F , the claim (4.8) for α ∈ C∞(M) reduces to the claim
that for n,m ∈ N0, m > 0, the operator

bε : C
∞
c (Rn × Rm) −→ C∞

c (Rn × Sm−1), f 7−→ bε(f)(x, y) := f(x, εy) ,

satisfies for each f ∈ C∞
c (Rn × Rm) that

bε(f)
ε→0−→ f0 in C∞

c (Rn × Sm−1),

where f0(x, y) := f(x, 0). One easily verifies that this holds, finishing the proof of the
claim.

Combining (4.6), (4.7), and (4.8) allows us to evaluate the limit in (4.5), yielding∫
M reg

0

emω0κ(dgσ) =
∑

F∈F0
indef

∫
SF

e
mν∗SF

ωF ν∗SF
σF
( i
2π
dΘSF

)
∧ΘSF

= 0 ,

since σF := inc∗F σ ≡ 0 by assumption. This concludes the proof. □

Lemma (4.4) gives a partial cohomological interpretation for the regular Kirwan map
(4.3), since it shows that the integral of the left-hand side of (4.4) does not depend on the
choice of a connection with normal form near the singularities. Theorem 5.7 will actually
show a posteriori that the condition inc∗F σ ≡ 0 is not necessary for (4.4) to hold.
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4.2. Kirwan map of a partial resolution. In order to compare our results with those
in [29], let us now discuss the Kirwan map of a partial resolution. Suppose that J −1({0})
is of indefinite type, and recall the notations of Section 3. For any connected component
F ∈ F0 of the set of fixed points MS1

contained in J −1({0}) we consider the complex
blow-up

βΣ̃F
: Σ̃F −→ ΣF(4.9)

of ΣF along its zero section F ⊂ ΣF in the sense of [12, Section 8], which is equivariant with
respect to the S1-action considered in Section 3. The strict transform of the submanifold

ZF ⊂ ΣF introduced in (3.6) is defined as the closure Z̃F := β−1

Σ̃F
(ZF ) ⊂ Σ̃F and inherits

a natural structure of a smooth S1-submanifold of Σ̃F . Setting F0 := ⊔F∈F0F ⊂ MS1
we

then define the complex blow-up of M along F0 ⊂M as the unique S1-equivariant map

(4.10) β : M̃ −→M

which restricts to an S1-equivariant diffeomorphism over M \ F0 and which, over each

open set UF ⊂ M as in Proposition 3.2 is given by the map βΣ̃F
over VF . Like Z̃F ,

the strict transform Z̃ of the subset J −1({0})reg ⊂ M is defined as the closure Z̃ :=

β−1(J −1({0})reg) ⊂ M̃ and inherits a natural structure of a smooth S1-submanifold of M̃ .

Since the S1-action on Z̃ is locally free, one is led to the following definition.

Definition 4.5. The partial resolution of the symplectic quotient M0 is defined as the
orbifold

M̃0 := Z̃/S1 ,

together with the map β0 : M̃0 −→ M0 induced by the map (4.10) after taking quotients

by the S1-action. The unique form ω̃0 ∈ Ω2(M̃0,R) satisfying

π̃∗
0ω̃0 = inc∗

Z̃
β∗ω ,

where π̃0 : Z̃ −→ M̃0 denotes the quotient map, is called the degenerate symplectic form

of M̃0.

Partial resolutions were introduced for arbitrary compact Lie group actions by Kirwan
in [21] in the algebraic case and by Meinrenken and Sjamaar in [29, Section 4.1.2] in the
symplectic case. As it is explained in [7, Corollary 3.14], our definition agrees with this
definition in the case G = S1.
We now define the following alternative notion of a Kirwan map for singular symplectic

quotients by an S1-action, even though M̃ does not admit a canonical structure of a
Hamiltonian S1-manifold.

Definition 4.6. The resolution Kirwan map is the map

(4.11) κ̃ := κ ◦ β∗ : Hω
S1(M) −→ H(M̃0)
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where β∗ : Hω
S1(M) → Hω

S1(M̃) is induced by the map (4.10) and κ : Hω
S1(M̃) −→ H(M̃0)

is defined at the level of complexes by the formula (4.1) with inc0 : J −1({0}) →M replaced

by the inclusion map incZ̃ : Z̃ → M̃ .

The following result gives another topological interpretation of the regular Kirwan map
(4.3), strenghtening Lemma 4.4 under an appropriate combinatorial condition on the S1-
action around the fixed points.

Lemma 4.7. With the notation of Section 3.1, assume that the weights of the S1-action
satisfy the condition

(4.12)
#W+∑
k∈W+ |k|

=
#W−∑
k∈W− |k|

for each F ∈ F0
indef . Then, for any connection Θ ∈ Ω1(J −1({0})reg,R) with normal form

near the singularities in the sense of Definition 4.2 there exists a connection Θ̃ ∈ Ω1(Z̃,R)
for the S1-action on the strict transform Z̃ satisfying

(4.13) Θ̃|β−1(J−1({0})reg) = (β|β−1(J−1({0})reg))
∗Θ .

In particular, for any σ ∈ Ω∗
S1(M) we have

(4.14)

∫
M reg

0

eω0κ(σ) =

∫
M̃0

eω̃0κ̃(σ) .

Proof. Let F ∈ F0
indef and equip the complex vector bundle νF : ΣF → F with the Her-

mitian norm 1√
2
∥ · ∥F defined by Equation (3.11). Write νSF

: SF → F for the associated

unit sphere bundle and consider the natural diffeomorphism

ΨSF
: SF × (0,∞)

∼−−→ ΣF\F
(w, t) 7−→ tw .

(4.15)

Then, the bi-ellipsoid bundle SF → F defined in (3.44) satisfies SF ⊂ SF . Next, using the
notation (3.35), let us set

(4.16) ΘSF
:=

1

2
inc∗SF

(α+
F + α−

F ) ∈ Ω1(SF ,R) .

Comparing with Equations (3.37) and (3.41) one gets the identity ΘSF
= inc∗SF

ΘSF
, while

via the restricted diffeomorphism (3.50) one has Ψ∗
FΘZF

= pr∗SF
ΘSF

. On the other hand,
by Definitions (3.13) and (3.14) one readily checks that (4.16) is basic for the S1-action over
SF induced by multiplication with e2πiθ ∈ C∗ for all θ ∈ R/Z if and only if the condition
(4.12) is satisfied. Write ϑF ∈ Ω1(ΣF\F,R) for the unique form over the complement of
the zero section inside ΣF satisfying Ψ∗

SF
ϑF = pr∗SF

ΘSF
. Then, according to [12, Section

11] there exists a unique form ϑ̃F ∈ Ω1(Σ̃F ,R) satisfying

ϑ̃F |β−1

Σ̃F
(ΣF \F ) = (βΣ̃F

|β−1

Σ̃F
(ΣF \F ))

∗ϑF .
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By restricting ϑ̃F to Z̃F ⊂ Σ̃F one gets a form ΘZ̃F
∈ Ω1(Z̃F ,R) satisfying

ΘZ̃F
|β−1

Σ̃F
(ZF ) = (βΣ̃F

|β−1

Σ̃F
(ZF ))

∗ΘZF
.

In view of Definition 4.2 of a connection Θ ∈ Ω1(J −1({0})reg,R) with normal form near the
singularities this concludes the proof of (4.13). Formula (4.14) is then a straightforward
consequence of the Definitions 4.3 and 4.6 of the regular and resolution Kirwan maps, using

the fact that β−1
0 (M reg

0 ) is of full measure inside M̃0. □

Lemma 4.7 shows that, under the combinatorial condition (4.12), the first term in (1.10)

can be interpreted topologically in terms of the partial resolution M̃0 of M introduced in
Definition 4.5. We will show in Section 6.3 that this condition is actually realised on a
large class of examples.

Remark 4.8. It is instructive to compare the resolution Kirwan map of Definition 4.6
with the Kirwan map considered by Jeffrey, Kiem, Kirwan, and Woolf in [17] in the case
G = S1. They work in the complex case, so that M0 is obtained as a GIT quotient by a C∗-
action of a smooth projective variety M , and work instead with the so-called intersection
cohomology IH∗(M0) of the singular quotient. Relying on the fact that the intersection

cohomology naturally occurs as a summand inside the usual cohomology H∗(M̃0) of the

partial resolution M̃0 of Definition 4.5, they consider the canonical map

(4.17) κIH : H∗
G(M) −→ H∗(M̃0) −→ IH∗(M0),

obtained by composition of the resolution Kirwan map κ̃ : Hω
S1(M) −→ H(M̃0) of Defini-

tion 4.6 with the canonical projection from H∗(M̃0) onto the summand IH∗(M0). Never-

theless, in the general symplectic setting, the relation between IH∗(M0) and H∗(M̃0) is
not as clear as in the complex setting considered in [17], and there might not be a canonical
choice of an intersection Kirwan map in general.

5. Asymptotic expansion of the Witten integral

We shall now introduce the Witten integral, which is our main tool in our approach
to geometric quantization of singular symplectic quotients. We work in the setting of
Section 3.1, so that G = S1 and the identification g ≃ R of (2.6) is understood. Recall
in particular the identification (2.7) of Ω∗

S1(M) with the space of S1-invariant differential
forms with values in entire analytic series of the variable x ∈ R, and the identification
(2.11) of the moment map with a real-valued function J :M → R.

Definition 5.1. For any equivariantly closed ϱ ∈ Ω∗
S1(M) and any test function ϕ ∈

C∞
c (R), the associated Witten integral depending on a parameter m ∈ N is given by the

formula

(5.1) ⟨Wm(ϱ), ϕ⟩ :=
∫
R

[∫
M

e2πimxJ emωϱ(x)

]
ϕ(x) dx .
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The precise form of the exponents in (5.1) is determined by our conventions in (2.10) and
(2.1), as it is crucial that ω̄(X) := ω+2πiJ (X) ∈ Ω∗

S1(M) is equivariantly closed. In (5.1),
ϕ ∈ C∞

c (R) plays the role of a test function at which the distribution Wm(ϱ) ∈ D′(R) is
evaluated, and this distribution is the object that we are primarily interested in, the main
goal being a description of the asymptotic behavior of Wm(ϱ) as m→ ∞.
The analytic difficulties underlying the study of the asymptotic behavior of the Witten

integral have already been overcome in the previous work [6]. In that work the problem
of deriving asymptotics of (5.1) as m → ∞ is considered in the more general setting of
studying the asymptotic behavior of so-called generalized Witten integrals

(5.2)

∫
R

∫
M

eiψ(p,x)/εa(p) dM(p)ϕ(x) dx

as ε→ 0+, with amplitudes a ∈ C∞
c (M), ϕ ∈ C∞

c (R), and phase function ψ ∈ C∞(M ×R)
given by ψ(p, x) := 2πJ (p)(x), dM := ωn/n! being the symplectic volume form on M .
Since the critical set

Crit(ψ) := {(p, x) ∈M × R : dψ(p, x) = 0} = {(p, x) ∈ J −1({0})× R : X̃p = 0}

is not clean unless 0 is a regular value of J , the stationary phase principle cannot be
applied.Instead, a complete asymptotic expansion for integrals of the form (5.2) was derived
in [6, Theorem 1.1] via a process called destratification, the coefficients in the asymptotics
being given by integrals over the strata of the singular symplectic quotient M0. From this,
the existence of an expansion of (5.1), and also some rough properties of its coefficients, can
be inferred. However, within that more general framework the equivariant-cohomological
interpretation of the coefficients in the obtained expansion remains elusive. Therefore, we
shall not use the results derived there but proceed from scratch, based on the fact that the
amplitude in the Witten integral is an equivariantly closed form, which allows a simpler
and concise treatment.

5.1. Preliminaries. We begin now with the study of the asymptotics of the Witten inte-
gral 5.1. Conceptually, we will follow the method of Meinrenken in [27, Proof of Theorem
3.3], the crucial idea being a retraction onto the zero level set of the moment map and
the use of the equivariant homotopy Lemma 2.3 and equivariant Stokes’ Lemma 2.2, com-
bined with the classical stationary phase principle. But since we do not assume zero to
be a regular value of the moment map, the situation is much more involved. In fact, we
will combine a retraction onto the regular stratum of J −1({0}) with retractions onto the
several components of the singular stratum of J −1({0}).

As a first step, we choose – once and for all – for each F ∈ F open sets UF ⊂ M and
VF ⊂ ΣF as in Proposition 3.2. For technical purposes, we choose them small enough
such that the symplectic form (3.40) is actually non-degenerate on a slightly larger tubular

neighborhood ṼF ⊂ ΣF of the zero section of ΣF containing V F , so that Proposition 3.2

applies to a corresponding neighborhood ŨF ⊂ M containing UF with a symplectomor-

phism Φ̃F : ṼF → ŨF extending ΦF , while keeping the sets ŨF obtained for the different
F disjoint. This setup will be kept fixed in all of the following.
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Lemma 5.2. There exists δ > 0 and an S1-invariant open neighborhood W ⊂ M \MS1

of J −1({0})reg together with a retraction ret0 : W → J −1({0})reg and an S1-equivariant
diffeomorphism

ΦW : W
∼−→ J −1({0})reg × (−δ, δ), p 7−→ (ret0(p),J (p)),(5.3)

such that for all F ∈ F0
indef we have Φ−1

F (UF ∩W ) ⊂ ΣF•• and

(5.4) Φ−1
F ◦ (ret0|UF∩W ) = retZF

◦ Φ−1
F |UF∩W ,

while W ∩ ŨF = ∅ for all F ∈ F0
def .

Proof. Let gTM be an S1-invariant Riemannian metric on M satisfying Φ∗
F (g

TM |ŨF
) =

gTΣF in the local normal form coordinates of Proposition 3.2 for all F ∈ F . Write
gradJ ∈ C∞(M,TM) for the associated Riemannian gradient of J : M → R, and let

ξ ∈ C∞(M\MS1
, TM) be the vector field

(5.5) ξ :=
gradJ

∥gradJ ∥2
gTM

,

where we use that the Hamiltonian S1-action is locally free on M\MS1
, so that gradJ is

nowhere vanishing on M\MS1
. The vector field (5.5) is transverse to J −1({0})reg, satisfies

dJ ⌟ ξ = 1 over M\MS1
, and in view of (3.27) is mapped to the vector field ∂

∂q
by the

diffeomorphism of Proposition 3.2 over ŨF ⊂ M for each F ∈ F0
indef . From this explicit

description near each F ∈ F0
indef and the fact that the set K := J −1({0})reg ∩ (M \⋃

F∈F0
indef

UF ) is compact, it follows that there is a δ > 0 such that the flow Φξ
t of ξ is

defined on J −1({0})reg for all t ∈ (−δ, δ). Consequently, the smooth map

Φξ : J −1({0})reg × (−δ, δ) −→M

(p, t) 7−→ Φξ
t (p) ,

(5.6)

is a diffeomorphism onto its image satisfying J (Φξ(p, t)) = t for all p ∈ J −1({0})reg and
t ∈ (−δ, δ). Setting W := im(Φξ) ⊂ M , we define the diffeomorphism (5.3) to be the
inverse of (5.6). Recalling the definition of retZF

in (3.49), all claimed properties except

the last one are satisfied by construction. Finally, note that K is disjoint from
⋃
F∈F0

def
ŨF

simply because J −1({0})reg is disjoint from ŨF when F is definite. So it suffices to take δ

small enough to get that W ∩ ŨF = ∅ for all F ∈ F0
def . □

The following simple consequence of the equivariant Stokes’ Lemma 2.2 and the equi-
variant homotopy Lemma 2.3 will allow us to greatly simplify the computations of the next
section.

Lemma 5.3. The Witten integral of Definition 5.1 only depends on the equivariant coho-
mology class of ϱ ∈ Ω∗

S1(M) inside Hω
S1(M). Moreover, each equivariant cohomology class

in Hω
S1(M) has a representative ϱ ∈ Ω∗

S1(M) satisfying

(5.7) Φ∗
F (ϱ|UF

) = (ν∗ΣF
inc∗Fϱ)|VF for all F ∈ F0
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and

(5.8) ϱ|W = ret∗0 inc
∗
0 ϱ,

where ret0 : W → J −1({0})reg is as in Lemma 5.2 with a suitable δ > 0 and inc0 :
J −1({0})reg →M denotes the inclusion map.

Proof. The first claim is standard. Indeed, let ϱ ∈ Ω∗
S1(M) be equivariantly closed. In view

of the fact that e2πimJ (x)emω ∈ Ω∗
S1(M) is equivariantly closed, Lemma 2.2 implies for any

equivariant form γ ∈ Ω∗
S1(M) that

⟨Wm(ϱ+ dgγ), ϕ⟩ =
∫
R

[∫
M

e2πimxJ emωϱ(x) +

∫
M

e2πimxJ emωdgγ(x)

]
ϕ(x) dx

=

∫
R

[∫
M

e2πimxJ emωϱ(x) +

∫
M

dg
(
e2πimxJ emωγ(x)

)]
ϕ(x) dx

=

∫
R

[∫
M

e2πimxJ emωϱ(x)

]
ϕ(x) dx = ⟨Wm(ϱ), ϕ⟩,

proving the first claim of the lemma.
Let us consider now an arbitrary equivariantly closed ϱ̃ ∈ Ω∗

S1(M). To prove the re-
maining assertions of the lemma, we need to construct an equivariantly closed ϱ ∈ Ω∗

S1(M)
in the cohomology class [ϱ̃] ∈ Hω

S1(M) satisfying (5.7) and (5.8). Using Lemma 2.3 with

N = F and UN = ŨF we get for each F ∈ F0 an equivariant form γF ∈ Ω∗
S1(ṼF ) such that

(5.9) Φ̃∗
F (ϱ̃|ŨF

) = (ν∗ΣF
inc∗F ϱ̃)|ṼF + dgγF .

Let χF ∈ C∞(M) have compact support in ŨF and be identically equal to 1 on UF . Setting

γ :=
∑
F∈F0

χF (Φ̃
−1
F )∗γF ∈ Ω∗

S1(M) ,

the equivariantly closed form ϱ̂ := ϱ̃− dgγ ∈ Ω∗
S1(M) satisfies Φ̃∗

F (ϱ̂|UF
) = (ν∗ΣF

inc∗F ϱ̃)|VF .
But νΣF

◦ Φ̃−1
F ◦ incF = incF , so that (5.9) implies for each F ∈ F0

inc∗F dgγ = inc∗F ϱ̃− inc∗F (Φ̃
−1
F )∗((ν∗ΣF

inc∗F ϱ̃)|ṼF ) = 0,

yielding inc∗F ϱ̂ = inc∗F ϱ̃ and consequently

(5.10) Φ̃∗
F (ϱ̂|UF

) = (ν∗ΣF
inc∗F ϱ̂)|VF .

Next, choose δ > 0 in Lemma 5.2 such that it applies also with a slightly larger δ̂ > δ and

gives us two corresponding retractions r̂et0 : Ŵ → J −1({0})reg and ret0 : W → J −1({0})reg
from open subsets Ŵ ,W ⊂ M onto J−1({0})reg such that r̂et0|W = ret0. Let W be the

closure ofW inM . Then the compact setW \
⋃
F∈F0 UF lies inM \MS1

and its intersection

with J−1({0})reg is compact. By making δ, and hence W , smaller while keeping δ̂ fixed,
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we can therefore achieve that Ŵ contains W \
⋃
F∈F0 UF . Using Lemma 2.3 again, now

with N = J −1({0})reg and UN = Ŵ , there is a form σ ∈ Ω∗
S1(Ŵ ) such that

(5.11) ϱ̂|Ŵ = r̂et
∗
0 inc

∗
0 ϱ̂+ dgσ .

On the other hand, for any F ∈ F0
indef one has νΣF

◦ incZF
◦ retZF

= νΣF |ΣF•• so that from

(5.10) we deduce that Φ̃∗
F (ϱ̂|Ŵ∩UF

) = ret∗ZF
inc∗ZF

Φ̃∗
F (ϱ̂|Ŵ∩UF

) for such an F . Thanks to
Lemma 5.2 we therefore already know that

ϱ̂|Ŵ∩UF
= (r̂et0|Ŵ∩UF

)∗ inc∗0(ϱ̂|Ŵ∩UF
) .

Invoking the second part of the equivariant homotopy Lemma 2.3 and recalling that Ŵ

is disjoint from ŨF for each F ∈ F0
def , we can thus choose σ in Equation (5.11) such that

σ|Ŵ∩UF
≡ 0 for all F ∈ F0. Let χ ∈ C∞

c (Ŵ ) be identically equal to 1 on W \
⋃
F∈F0 UF .

Then we can extend σ by 0 by setting σ̂ := χσ ∈ Ω∗
S1(M), and ϱ := ϱ̂ − dgσ̂ ∈ Ω∗

S1(M)
satisfies the properties (5.7) and (5.8). Since it differs from ϱ̂ ∈ Ω∗

S1(M), and hence from
ϱ̃ ∈ Ω∗

S1(M), by an equivariantly exact form, [ϱ] = [ϱ̃] ∈ Hω
S1(M), which concludes the

proof. □

Conceptually, this lemma implies that when computing the Witten integral we can make
the following assumption, which will lead to substantial simplifications later.

Assumption 5.4. The equivariantly closed form ϱ ∈ Ω∗
S1(M) in the Witten integral (5.1)

satisfies the conditions (5.7) and (5.8).

In order to obtain a meaningful geometric interpretation for the asymptotic expansion
of the Witten integral, we will also make the following assumption.

Assumption 5.5. The test function ϕ ∈ C∞
c (R) in Definition 5.1 is identically equal to 1

in a neighborhood of 0.

Next, we choose a δ > 0 as in Lemma 5.3 and a cutoff function τ ∈ C∞
c (R) with

supp τ ⊂ (−δ, δ) such that τ ≡ 1 on [−δ/2, δ/2]. Since emω is a polynomial in m ∈ N,
the non-stationary phase principle implies that as m→ +∞ we have for any equivariantly
closed ϱ

(5.12) ⟨Wm(ϱ), ϕ⟩ =
∫
R

[∫
M

e2πimxJ emωϱ(x) τ ◦ J
]
ϕ(x) dx+O(m−∞) ,

so that the integral localizes around the zero level set J −1({0}) ⊂ M . Now, since M
is compact, we can take δ small enough such that with the coordinates defined by the
diffeomorphisms (3.42) and (3.48) introduced in Section 3.3, we can define for every F ∈ F0

cutoff functions χF ∈ C∞
c (UF ) and τF ∈ C∞

c (VF ) by the characterizing relations

(τF ◦ΨF )(p, r) = τ(r2/2), (p, r) ∈ SF × (0,∞), for F definite,

(τF ◦ΨF )(p, r, q) = τ(r)τ(q), (p, r, q) ∈ SF × R× (0,∞), for F indefinite,(5.13)

χF ◦ ΦF = τF .
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Note that, as τ equals 1 near 0, the functions χF and τF are well-defined by (5.13) even
though the coordinate r (in the definite case) and the coordinates r, q (in the indefinite
case) are only available on the subspaces ΣF• ⊂ ΣF and ΣF•• ⊂ ΣF , respectively.
We then decompose the integral in (5.12) further as

⟨Wm(ϱ), ϕ⟩ =
∫
R

[∫
M

e2πimxJ emωϱ(x)

(
τ ◦ J −

∑
F∈F0

χF

)]
ϕ(x) dx︸ ︷︷ ︸

=:⟨Wreg
m (ϱ),ϕ⟩

+
∑
F∈F0

∫
R

[∫
M

e2πimxJ emωϱ(x) χF

]
ϕ(x) dx︸ ︷︷ ︸

=:⟨WF
m(ϱ),ϕ⟩

+ O(m−∞).

We then obtain

⟨Wm(ϱ), ϕ⟩ = ⟨Wreg
m (ϱ), ϕ⟩+

∑
F∈F0

⟨WF
m(ϱ), ϕ⟩+O(m−∞) ,(5.14)

where by pullback along ΦF and thanks to Assumption 5.4 we have

(5.15) ⟨WF
m(ϱ), ϕ⟩ =

∫
R

[∫
ΣF

e2πim
x
2
QF emωΣF ν∗ΣF

ϱF (x) τF

]
ϕ(x) dx.

5.2. Definite fixed point set components. Let us begin with the simpler definite case,
so that F ∈ F0

def . Then either F ∈ F0
+ or F ∈ F0

−, depending on whether F is positive or
negative definite. Recall also that we have J −1({0})∩UF = F , which is fixed by the action
of S1. Pulling back the inner integral in (5.15) along the diffeomorphism ΨF introduced in
(3.42), taking into account Diagram (3.43) and the fact that ΣF• has full measure in ΣF ,
and using (5.13) and (3.20) we get

⟨WF
m(ϱ), ϕ⟩ =

∫
R

[∫
SF×(0,∞)

τ(r2/2)e±2πimx
2
r2emΨ∗

F (ωΣF
|ΣF• )ν∗SF×(0,∞)ϱF (x)

]
ϕ(x) dx if F ∈ F±.

Corollary 3.6 implies that

(5.16) Ψ∗
F (ωΣF

|ΣF•) = ν∗SF×(0,∞)ωF ± r dr ∧ pr∗SF
ΘSF

± r2

2
pr∗SF

dΘSF
if F ∈ F± ,

so that expanding the exponential series and taking into account the fact that the first and
last terms of the right-hand side of (5.16) have no dr part as they are pulled back from F
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and SF respectively, we get

⟨WF
m(ϱ), ϕ⟩ =

∞∑
k=0

(±m)k+1

2k

∫
R

[ ∫
SF×(0,∞)

τ(r2/2)e±πimxr
2

e
mν∗

SF×(0,∞)
ωF

ν∗SF×(0,∞)ϱF (x)
dΘk

SF

k!
dr ∧ΘSF

r2k+1

]
ϕ(x) dx

=
∞∑
k=0

(
±1

2π

)k+1 ∫
R

∫ ∞

0

e±ixsskτ(±s/(2πm))

[∫
SF

e
mν∗SF

ωF ν∗SF
ϱF (x)

dΘk
SF

k!
ΘSF

]
ϕ(x) ds dx.

(5.17)

Here we performed the change of variable s = mπr2 in the last line. Note also that the
infinite sum in (5.17) has only finitely many non-zero summands because dΘk

SF
= 0 for

k > ℓF .
Recall now that the Heaviside function H : R → R is defined by H(s) = 1 for all s ≥ 0

and H(s) = 0 otherwise. Using a standard formula for its Fourier transform as a tempered
distribution [14, Example 7.1.17] and the fact that τ ∈ C∞

c (R) is identically equal to 1 on
(−δ/2, δ/2), one gets for any k ∈ N and any Schwartz function ψ ∈ S(R) as m → ∞ the
equality∫ ∞

0

∫
R
e±isxskτ(±s/(2πm))ψ(x) dx ds =

∫ ∞

0

sk ψ̂(∓s) ds+
∫ ∞

0

sk (τ(±s/(2πm))− 1)ψ̂(∓s) ds

= (∓1)k
〈
qkH(∓q), ψ̂

〉
+O

(∫ ∞

mπδ

sk|ψ̂(∓s)| ds
)

= (±i)k+1k!
〈
x
−(k+1)
± , ψ

〉
+O(m−∞),(5.18)

where we used that ψ̂ is rapidly decreasing and introduced the distribution x−k± defined by

(5.19) x−k± := lim
ε→0+

(x± iε)−k ,

which satisfies the standard relation d
dx
x−k± = −kx−k−1

± for all k ∈ N as distributions. More

generally, for any absolutely converging Laurent series P (x) =
∑+∞

j=−N aj x
j, we will write

P (x±) for the distribution defined by

(5.20)
〈
P (x±), ψ

〉
:=

−1∑
j=−N

aj
〈
xj±, ψ

〉
+

〈
∞∑
j=0

ajx
j, ψ

〉
.

We thus get from (5.17) that as m→ ∞

⟨WF
m(ϱ), ϕ⟩ =

〈∫
SF

ν∗SF
ϱF (x) e

mν∗SF
ωF

∞∑
k=0

( i
2π
dΘSF

)k

xk+1
±

i

2π
ΘSF

, ϕ

〉
+O(m−∞)

=

〈∫
SF

e
mν∗SF

ωF ν∗SF
ϱF (x)

i
2π
ΘSF

x± − i
2π
dΘSF

, ϕ

〉
+O(m−∞) if F ∈ F± .

(5.21)



38 BENJAMIN DELARUE, LOUIS IOOS, AND PABLO RAMACHER

Remark 5.6. Adapting the proof of Duistermaat and Heckman in [9, (2.11)-(2.31)] one gets
from the first line of (5.21) that

(5.22) ⟨WF
m(ϱ), ϕ⟩ =

〈∫
F

emωF ϱF (x±)

eF (x±)
, ϕ

〉
+O(m−∞) if F ∈ F± ,

where eF (x) ∈ Ω∗
T (F ) is the equivariant Euler class of the normal bundle νΣF

: ΣF → F .
Note that the integrand coincides with the integrand appearing in Berline-Vergne local-
ization formula [3], and one can actually see that our method does provide an alternative
proof of it. In the application to the computation of the Riemann-Roch numbers in Section
6.1, we will not use Formula (5.22) but instead provide a direct proof based on (5.21) and
the Kirillov formula of Theorem 2.10.

5.3. Indefinite fixed point set components. Let us now deal with the indefinite case
F ∈ Findef , so that ℓ+F > 0 and ℓ−F > 0. Using the diffeomorphism ΨF introduced in (3.48)
and the coordinates (3.27), the integral (5.15) becomes

⟨WF
m(ϱ), ϕ⟩ =

∫
R

[∫
SF×(0,∞)×R

τ(r)τ(q)e2πimxqemΨ∗
F (ωΣF

|ΣF•• )ν∗SF×(0,∞)×RϱF (x)

]
ϕ(x) dx.

(5.23)

Now, by Corollary 3.7 we know that

(5.24) Ψ∗
F (ωΣF

|ΣF••) = π∗
ZF

inc∗ZF
ωΣF

+ d
(
q pr∗SF

ΘSF

)
+ dgβ̄F

where

β̄F := (
√
r4 + q2 − r2)pr∗SF

ΘSF
∈ Ω1(SF × (0,∞)× R)S1

bas

is a basic form in the sense of (2.5), so that in particular dβ̄F = dgβ̄F by Definition 2.1.
Since

(5.25) dgβ̄F = dβ̄F = (
√
r4 + q2 − r2)pr∗SF

dΘSF
+
(2r3 dr + q dq√

r4 + q2
− 2r dr

)
∧ pr∗SF

ΘSF
,

both β̄F and dgβ̄F have bounded extensions to the manifold with boundary SF×[0,∞)×R.
On the other hand, the summand d

(
q pr∗SF

ΘSF

)
is constant with respect to r, and the fact

that the summand π∗
ZF

inc∗ZF
ωΣF

is bounded as r → 0+ follows from (3.30) in view of (3.40)
and (3.39). Inserting (5.24) into (5.23) therefore yields

(5.26) ⟨WF
m(ϱ), ϕ⟩ = IF1 (m) + IF2 (m),
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where the integrals

IF1 (m) :=

∫
R

[∫
SF×(0,∞)×R

τ(r)τ(q)e2πimxqe
mπ∗

ZF
inc∗ZF

ωΣF
+md(q pr∗SF

ΘSF
)
ν∗SF×(0,∞)×RϱF (x)

]
ϕ(x) dx,

IF2 (m) :=

∫
R

[ ∫
SF×(0,∞)×R

τ(r)τ(q)e2πimxqe
mπ∗

ZF
inc∗ZF

ωΣF
+md(q pr∗SF

ΘSF
)
ν∗SF×(0,∞)×RϱF (x)(

emdgβ̄F − 1
)]
ϕ(x) dx

are absolutely convergent.

5.3.1. The integral IF1 (m). Let us first turn to the integral IF1 (m). Here we closely follow
the method of [27, Proof of Theorem 3.3]. Isolating the dq part in (5.24) and expanding
the corresponding exponential series we get

IF1 (m) =
∞∑
k=0

mk+1

k!

∫
R

[ ∫
SF×(0,∞)×R

qke2πimxqτ(r)τ(q)ν∗SF×(0,∞)×RϱF (x)

e
mπ∗

ZF
inc∗ZF

ωΣF dq dΘk
SF
ΘSF

]
ϕ(x) dx

=
∞∑
k=0

mk+1

k!

∫
SF×(0,∞)

[ ∫
R2

qke2πimxqν∗SF×(0,∞)ϱF (x)τ(q)ϕ(x) dq dx︸ ︷︷ ︸
=:Ĩ(m)

]
τ(r)emΨ∗

F inc∗ZF
ωΣF dΘk

SF
ΘSF

.

Here we took Diagram (3.51) into account. Note that, as before, the infinite sums occur-
ring here are actually finite because dΘk

SF
= 0 for k ∈ N large enough. Moreover, the

integrand of Ĩ(m) depends on the external parameters (p, r) ∈ SF × (0,∞) only via the
point νSF×(0,∞)(p, r) = νSF

(p) ∈ F , so that Ĩ(m) is constant with respect to r ∈ (0,∞).

Applying the classical stationary phase principle [14, Lemma 7.7.3] to Ĩ(m) while taking
into account Assumption 5.5, we get

Ĩ(m) =
ik

(2π)kmk+1

∂kν∗SF×(0,∞)ϱF

∂xk
(0) +O(m−∞), m→ +∞,

the estimate being uniform on SF × (0,∞) because SF is compact and Ĩ(m) is constant
with respect to r ∈ (0,∞). This yields

IF1 (m) =

∫
SF×(0,∞)

τ(r) emΨ∗
F inc∗ZF

ωΣF ν∗SF×(0,∞)ϱF

( i

2π
dΘSF

)
ΘSF

+O(m−∞)

=

∫
ZF

τ(r) eminc∗ZF
ωΣF ν∗ZF

ϱF

( i

2π
dΘZF

)
ΘZF

+O(m−∞)

=

∫
J−1({0})reg

χF e
m inc∗

J−1({0})reg
ω
inc∗J−1({0})regϱ

( i

2π
dΘ
)
Θ+O(m−∞).

(5.27)
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Here, in the second line, we consider r as a coordinate on ZF using the diffeomorphism ΨF

from (3.50). The third line is obtained by pullback along the diffeomorphism Φ−1
F , taking

into account Assumption 5.4, (3.7), the last line in Equation (5.13), and the fact that χF
is supported in UF .

5.3.2. The integral IF2 (m). Let us now turn to the integral IF2 (m). First note from (5.24)
that in the coordinates (3.27) defined by the diffeomorphism (3.48), the equivariant form
(5.28)

e2πimxqe
π∗
ZF

inc∗ZF
ωΣF

+d(q pr∗SF
ΘSF

)
= Ψ∗

F (e
2πimx

2
QF emωΣF )e−dgβ̄F ∈ Ω∗

S1(SF × (0,∞)× R)

is equivariantly closed. Note also that

(5.29) emdgβ̄F − 1 =
n∑
k=1

1

k!
(mdgβ̄F )

k = dg

(
m

n∑
k=1

mk

k!
β̄F (dgβ̄F )

k−1

︸ ︷︷ ︸
=:β̄m,F

)

is an equivariantly exact form. By (5.25) one concludes that

(5.30) β̄m,F = m
n∑
k=1

mk

k!
(
√
r4 + q2 − r2)k(pr∗SF

dΘSF
)k−1pr∗SF

ΘSF

has a continuous extension to the manifold with boundary SF × [0,∞) × R. Consider
further for ε ≥ 0 the manifold with boundary SF × [ε,∞)×R, together with the canonical
parametrization of its boundary given by the orientation preserving map

bF,ε : SF × R
∼=−→ SF × {ε} × R = ∂(SF × [ε,∞)× R),

(p, q) 7−→ (p, ε, q) .
(5.31)

Using Lebesgue’s convergence theorem, Lemma 2.2, and the fact that the form (5.28) is
equivariantly closed we get as m→ +∞

IF2 (m) = lim
ε→0

∫
R

[ ∫
SF×[ε,∞)×R

τ(r)τ(q)e2πimxqe
mπ∗

ZF
inc∗ZF

ωΣF
+md(q pr∗SF

ΘSF
)

dgβ̄m,F ν
∗
SF×(0,∞)×RϱF (x)

]
ϕ(x) dx

= lim
ε→0

∫
R

[ ∫
SF×[ε,∞)×R

dg

(
τ(r)τ(q)e2πimxqe

mπ∗
ZF

inc∗ZF
ωΣF

+md(q pr∗SF
ΘSF

)

β̄m,F ν
∗
SF×(0,∞)×RϱF (x)

)]
ϕ(x) dx−RF

2 (m)

= lim
ε→0

∫
R

[ ∫
SF×R

b∗F,ε

(
τ(r)τ(q)e2πimxqe

mπ∗
ZF

inc∗ZF
ωΣF

+md(q pr∗SF
ΘSF

)

β̄m,F ν
∗
SF×{ε}×RϱF (x)

)]
ϕ(x) dx−RF

2 (m),
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where we wrote

(5.32) RF
2 (m) :=

∫
R

∫
SF×(0,∞)×R

d(τ(r)τ(q))e2πimxqe
mπ∗

ZF
inc∗ZF

ωΣF
+md(q pr∗SF

ΘSF
)

β̄m,F ν
∗
SF×(0,∞)×RϱF (x)ϕ(x) dx.

Now, notice that (3.38), (3.33), and (3.32) imply that ωvert is homogeneous of degree 2
with respect to scalar multiplication in the fiber, so that according to the definition (3.40)
of ωΣF

one has

(5.33) b∗F,επ
∗
ZF

inc∗ZF
ωΣF

= ε2pr∗SF
inc∗SF

ωvert + pr∗SF
ν∗SF

ωF .

Taking into account (5.30) and expanding the exponential series we therefore see that with

ĨF2 (m) :=

∫
R2

e2πimxq
n∑
k=1

|q|kmk+1

k!

[ ∫
SF

e
mν∗SF

ωF+mqdΘSF (dΘSF
)k−1 ν∗SF

ϱF (x)ΘSF
ΘSF

]
τ(q)ϕ(x) dx dq

we obtain

(5.34) IF2 (m) = ĨF2 (m)−RF
2 (m).

Separating the sum over k into even and odd indices and using the sign function sgn : R →
R defined for all q ∈ R by sgn(q) := H(q)−H(−q), we rewrite ĨF2 (m) as

ĨF2 (m) = m

∫
R2

e2πimxqτ(q)

∫
SF

e
mν∗SF

ωF ν∗SF
ϱF (x)ϕ(x)ΘSF

ΘSF

emq dΘSF

[
sgn(q)

n∑
k=1
k odd

qkmk

k!
dΘ

k−1

SF
+

n∑
k=1
k even

qkmk

k!
dΘ

k−1

SF

]
dq dx

= m

∫
R2

e2πimxqτ(q)

∫
SF

e
mν∗SF

ωF ν∗SF
ϱF (x)ϕ(x)ΘSF

ΘSF[
sgn(q)

n∑
j,k=0
k odd

qj+kmj+k

j! k!
dΘj

SF
dΘ

k−1

SF
+
e
mq dΘ+

SF + e
mq dΘ−

SF − 2 emq dΘSF

2 dΘSF

]
dq dx ,(5.35)

where we used the fact that, by the definition of ΘSF
and ΘSF

in (3.46), one has

emq dΘSF

n∑
k=1
k even

qkmk

k!
dΘ

k−1

SF
=
emq dΘSF

2

(
emq dΘSF − 1

dΘSF

+
e−mq dΘSF − 1

dΘSF

)

=
e
mq dΘ+

SF + e
mq dΘ−

SF − 2 emq dΘSF

2 dΘSF

.

Expanding the exponential series and applying the classical stationary phase principle [14,
Lemma 7.7.3] to the second term in the square bracket of (5.35) yields the asymptotic
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expansion

m

∫
R2

e2πimxqτ(q)ν∗SF
ϱF (x)ϕ(x)

e
mq dΘ+

SF + e
mq dΘ−

SF − 2 emq dΘSF

2 dΘSF

dq dx

=
ν∗SF

ϱF (
i
2π
dΘ+

SF
) + ν∗SF

ϱF (
i
2π
dΘ−

SF
)− 2 ν∗SF

ϱF (
i
2π
dΘSF

)

2 dΘSF

+O(m−∞),

where the remainder estimate is uniform in the base point in SF because the latter is
compact. To deal with the first term in the square bracket of (5.35) we note that with the
substitution s = 2πmq and (5.18) one computes

∫
R2

e2πimxqτ(q) ν∗SF
ϱF (x)ϕ(x)sgn(q) q

j+k dq dx

= 2
( i

2πm

)j+k+1

(j + k)!
〈
x−(j+k+1), ν∗SF

ϱF (x)ϕ(x)
〉
+O(m−∞),

where we introduced the distributions

(5.36) x−k :=
1

2

(
x−k+ + x−k−

)
, k ∈ N0.

We will also use the notation (5.20) with the distributions (5.36). Expanding e
mν∗SF

ωF ,
separating powers of m, and recalling Assumption 5.5 we get from (5.35) the asymptotic
expansion

ĨF2 (m) =

∫
SF

e
mν∗SF

ωF
ν∗SF

ϱF (
i
2π
dΘ+

SF
) + ν∗SF

ϱF (
i
2π
dΘ−

SF
)− 2 ν∗SF

ϱF (
i
2π
dΘSF

)

2 dΘSF

ΘSF
ΘSF

+ 2
n∑

j,k=0
k odd

( i
2π
)j+k+1(j + k)!

j! k!

〈
x−(j+k+1),

∫
SF

e
mν∗SF

ωF ν∗SF
ϱF (x)dΘ

j
SF
(dΘSF

)k−1ΘSF
ΘSF

ϕ(x)

〉
(5.37)
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up to terms of order O(m−∞) as m→ ∞. Let us now simplify (5.37) with the help of the
binomial theorem by writing for x ̸= 0

2
n∑

j,k=0
k odd

(j + k)!

j! k!

( i
2π
)j+k+1

xj+k+1
dΘj

SF
(dΘSF

)k−1ΘSF
ΘSF

=
n∑

j,k=0

(j + k)!

j! k!

dΘj
SF
(dΘSF

)k − dΘj
SF
(−dΘSF

)k

(−2πix)j+k+1 dΘSF

ΘSF
ΘSF

=
n∑
r=0

(dΘSF
+ dΘSF

)r − (dΘSF
− dΘSF

)r

(−2πix)r+1 dΘSF

ΘSF
ΘSF

=
ΘSF

ΘSF

dΘSF

(
1

−2πix− (dΘSF
+ dΘSF

)
− 1

−2πix− (dΘSF
− dΘSF

)

)
=

i
2π
Θ+
SF

x− i
2π
dΘ+

SF

i
2π
Θ−
SF

x− i
2π
dΘ−

SF

,

where in the last step we used the definitions of ΘSF
and ΘSF

given in (3.46). Using the
exceptional Kirwan map introduced in (1.11) we finally arrive at

(5.38)

ĨF2 (m) =

∫
SF

e
mν∗SF

ωFκF (ϱF ) +

〈∫
SF

e
mν∗SF

ωF ν∗SF
ϱF (x)

i
2π
Θ+
SF

x− i
2π
dΘ+

SF

i
2π
Θ−
SF

x− i
2π
dΘ−

SF

, ϕ

〉
+O(m−∞).

This deals with the first term of the right-hand side of (5.34). Using equations (5.13) and
(5.28) the second term RF

2 (m) given in (5.32) is seen to be equal to

(5.39) RF
2 (m) =

∫
R

∫
M

(dχF ) e
2πimxJ emωe−dgβ̃F β̃m,F ϱ(x)ϕ(x)dx ,

where the basic forms β̃F , β̃m,F ∈ Ω∗(UF\F )S
1

bas are characterized by Φ∗
F β̃F := (Ψ−1

F )
∗
β̄F

and Φ∗
F β̃m,F := (Ψ−1

F )
∗
β̄m,F with ΦF restricted to VF∩ΣF••; they can be extended smoothly

from ΦF (VF ∩ ΣF••) to UF\F thanks to Formulas (5.3) and (5.30). Collecting everything
we finally get

(5.40)

IF2 (m) =

∫
SF

e
mν∗SF

ωFκF (ϱF ) +

〈∫
SF

e
mν∗SF

ωF ν∗SF
ϱF (x)

i
2π
Θ+
SF

x− i
2π
dΘ+

SF

i
2π
Θ−
SF

x− i
2π
dΘ−

SF

, ϕ

〉
−RF

2 (m) +O(m−∞) .

5.4. Full asymptotic expansion of the Witten integral. Let us now combine the
computations of the whole section to establish the full asymptotic expansion of the Witten
integral (5.1).
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Theorem 5.7. Let ϕ be identically equal to 1 in a neighborhood of 0. Then, for any
equivariantly closed form ϱ ∈ Ω∗

S1(M) one has the asymptotic expansion

(5.41)

⟨Wm(ϱ), ϕ⟩ =
∫

M reg
0

emω0κ(ϱ) +
∑

F∈F0
def ,F∈F0

±

〈∫
SF

e
mν∗SF

ωF ν∗SF
ϱF (x±)

i
2π
ΘSF

x± − i
2π
dΘSF

, ϕ

〉

+
∑

F∈F0
indef

∫
SF

e
mν∗SF

ωFκF (ϱF ) +

〈∫
SF

e
mν∗SF

ωF ν∗SF
ϱF (x)

i
2π
Θ+
SF

x− i
2π
dΘ+

SF

i
2π
Θ−
SF

x− i
2π
dΘ−

SF

, ϕ

〉
+ O(m−∞)

as m → +∞. Furthermore, each summand in (5.41) only depends on the equivariant
cohomology class [ϱ] ∈ Hω

S1(M).

Proof. First, we prove (5.41) under Assumption 5.4. Having treated in the previous sub-
sections all terms in (5.14) except ⟨Wreg

m (ϱ), ϕ⟩, we are left with studying the latter integral.

To this end, we use the S1-equivariant diffeomorphism ΦW : W
∼−→ J −1({0})reg× (−δ, δ) of

Lemma 5.2, which provides the coordinate q := J (p) on W . This coordinate coincides for
all F ∈ F0

indef with the coordinate q of (3.27) via the diffeomorphism (3.48) when restricted
to UF ∩W . Now, following [27, Proof of Theorem 3.3], and analogously to Equation (5.24)
one has

(5.42) ω|W = ret∗0inc
∗
0ω + d(q ret∗0Θ) + dgβ̃,

where inc0 : J −1({0})reg → M is the inclusion, Θ ∈ Ω1(J −1({0})reg,R) is any connection

for the S1-action on J −1({0})reg in the sense of (2.8), and β̃ ∈ Ω∗(W )S
1

bas is a basic form in

the sense of (2.5) satisfying inc∗0 β̃ ≡ 0. Furthermore, thanks to (5.4) and comparing with
(5.24), we can choose the forms in (5.42) in such a way that for all F ∈ F0

indef we have

Φ∗
F (Θ|UF∩J−1({0})reg) = (Ψ−1

F )∗pr∗SF
ΘSF

and Φ∗
F (β̃|UF∩W ) = (Ψ−1

F )∗β̄F ,

with ΦF suitably restricted. In the same way as in (5.29), let us write

emdgβ̃ − 1 = dgβ̃m ,

with β̃m ∈ Ω∗(W )S
1

bas satisfying Φ
∗
F (β̃m|UF∩W ) = (Ψ−1

F )∗β̄m,F for all F ∈ F0
indef. In particular,

recalling the definitions of the forms appearing in (5.39), we have that β̃ = β̃F and β̃m =

β̃m,F on UF ∩W . Following [27, Proof of Theorem 3.3], which boils down to carrying over
the computations from Section 5.3 to the present situation, and using Assumption 5.4, we
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then readily obtain

⟨Wreg
m (ϱ), ϕ⟩ =

∫
J−1({0})reg

(
1−

∑
F∈F0

χF

)
em inc∗0ωinc∗0ϱ

( i

2π
dΘ
)
∧Θ

+
∑
F∈F0

∫
R

∫
M

(dχF ) e
2πimxJ emωe−dgβ̃β̃mϱ(x)ϕ(x)dx+O(m−∞)

=

∫
J−1({0})reg

(
1−

∑
F∈F0

χF

)
em inc∗0ωinc∗0ϱ

( i

2π
dΘ
)
∧Θ+RF

2 (m) +O(m−∞)(5.43)

as m → +∞, with RF
2 (m) as in (5.39). Note also that the sums on the right-hand side

of (5.43) can be restricted to F0
indef, since for definite F one has χF = 1 on J −1({0}) ∩

supp χF = F . Therefore, when inserting (5.43) into the original expression (5.14) for
⟨Wm(ϱ), ϕ⟩ while taking into account (5.26), the first term on the right-hand side of (5.43)
combines with the integrals IF1 (m) computed in (5.27) in such a way that all terms involving
the cutoff functions χF disappear. Similarly, the remainder term RF

2 (m) appears in (5.43)
and in (5.40) with opposite signs and thus gets cancelled out, which leaves only the term
(5.38). Summing up, we get

⟨Wm(ϱ), ϕ⟩ = ⟨Wreg
m (ϱ), ϕ⟩+

∑
F∈F0

def

⟨WF
m(ϱ), ϕ⟩+

∑
F∈F0

indef

(
IF1 (m) + IF2 (m)

)
+O(m−∞)

=

∫
J−1({0})reg

em inc∗0ωinc∗0ϱ
( i

2π
dΘ
)
∧ Θ+

∑
F∈F0

def

⟨WF
m(ϱ), ϕ⟩+

∑
F∈F0

indef

ĨF2 (m)(5.44)

+O(m−∞)

as m → +∞. If we now insert the expression (5.21) for the integrals ⟨WF
m(ϱ), ϕ⟩ with

definite F and the expression (5.38) for the integrals ĨF2 (m) and apply Lemma 2.6 to
the regular Kirwan map (4.3), we get the asymptotics (5.41) for any equivariantly closed
ϱ ∈ Ω∗

S1(M) satisfying Assumption 5.4.
Let us now deal with the case of a general equivariantly closed form ϱ ∈ Ω∗

S1(M) which
not necessarily satisfies Assumption 5.4. First, note that thanks to Lemma 5.3 the left-hand
side of (5.41) only depends on the equivariant cohomology class of ϱ. On the other hand,
by the same lemma one can write ϱ = ϱ̃+dgβ with ϱ̃ ∈ Ω∗

S1(M) satisfying Assumption 5.4,
so that we can apply (5.41) to ⟨Wm(ϱ), ϕ⟩ = ⟨Wm(ϱ̃), ϕ⟩. Since the equivariant homotopy
Lemma 2.3 implies that we can choose β such that βF := inc∗F β ≡ 0, it follows from
Lemma 4.4 that the first term on the right hand side of (5.41) remains unchanged if we
replace ϱ by ϱ̃; as ϱF = ϱ̃F , all other terms on the right hand side are also unchanged, and
we obtain (5.41) for ϱ.
Finally note that Lemma 2.6, applied to the S1-actions on S±

F in (1.9) with connections
Θ±
SF
, respectively, implies that all terms on the right-hand side of (5.41), except maybe the

first one, depend only on the equivariant cohomology class of ϱ. Since this is also true for
the left-hand side by Lemma 5.3, this implies that the first term of the right-hand side only
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depends on the equivariant cohomology class of ϱ up to an error of O(m−∞) as m→ +∞.
But as this term is polynomial in m ∈ N, this error actually vanishes identically in m ∈ N.
This concludes the proof of the theorem. □

Remark 5.8. Recalling the definition of SF from (3.44), we see that SF = S+
F ×F S

−
F as

a fiberwise product, where we set S±
F := PF ×KF

S2l±+1
± . On the other hand, the 1-forms

Θ±
SF

are connections for the S1-actions on S±
F , respectively. Thus, adapting the proof of

Duistermaat and Heckman in [9, (2.11)-(2.31)], and using the multiplicativity of the Euler
class one gets from (5.44) that as m→ +∞ one has

(5.45) ⟨Wm(ϱ), ϕ⟩ =
∫

M reg
0

emω0κ(ϱ) +
∑

F∈F0
indef

∫
SF

e
mν∗SF

ωFκF (ϱF )

+
∑

F∈F0
def ,F∈F0

±

〈∫
F

emωF ϱF (x±)

eF (x±)
, ϕ

〉
+

∑
F∈F0

indef

〈∫
F

emωF ϱF (x)

eF (x)
, ϕ

〉
+O(m−∞) ,

where eF (x) ∈ Ω∗
S1(F ) is the equivariant Euler class of the normal bundle νΣF

: ΣF → F .
Note again that the integrands in the last terms coincide with the integrand appearing in
Berline-Vergne localization formula [3]. As already pointed out in Remark 5.6, we will not
use this fact for the computation of the Riemann-Roch numbers in the next section, but
instead provide a direct proof based on (5.41) and the Kirillov formula of Theorem 2.10.

6. Invariant Riemann-Roch formula

In this section, we will proceed to the proof of our main result Theorem 1.1.

6.1. Asymptotics of Riemann-Roch numbers. In what follows, we will relate the
asymptotics as m → +∞ of the G-invariant Riemann-Roch numbers of Definition 2.9 for
G = S1 with the asymptotics of the Witten integral (5.1). As in Theorem 1.1, we assume

that the action of S1 is free on J −1({0}) \MS1
. Recall the identification (2.6) sending

X ∈ g to x ∈ R and let V0 be a small neighbourhood of 0 ∈ g such that exp : V0 → Ue :=
exp(V0) ⊂ S1 is a diffeomorphism. Take ψ ∈ C∞(S1,R) to be identically 1 around e ∈ S1

and compactly supported in Ue. We then have the following

Proposition 6.1. Under the assumptions of Theorem 1.1 we have
(6.1)

RRS1

(M,Lm) = ⟨Wm(ϱ), ϕ⟩+
∑
F∈F0

∫
S1

(1−ψ(g))
∫
F

Td(F ) emωF

det ΣF
(1− g exp(RΣF /2πi))

dg+O(m−∞)

asm→ +∞, where ⟨Wm(ϱ), ϕ⟩ is the Witten integral (5.1) evaluated on ϱ(x) := Tdg(M,X) ∈
Ω∗
S1(M) and ϕ(x) := ψ(exp(X)) ∈ C∞

c (V0,R).
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Proof. Applying Theorems 2.10 and 2.11 to (2.16) we get with (2.18)

RRS1

(M,Lm) =

∫
S1

χ(m)(g) dg =

∫
Ue

χ(m)(g)ψ(g) dg +

∫
S1

χ(m)(g)(1− ψ(g)) dg

=

∫
V0

∫
M

Tdg(M,X) chg(L
m, X)ψ(exp(X)) dX︸ ︷︷ ︸

=⟨Wm(ϱ),ϕ⟩

+

∫
S1

∫
MS1

Td(MS1
) TrLm [g−1] exp(−mRL/2πi)

det Σ
MS1 (1− g exp(RΣ

MS1 /2πi))
(1− ψ(g)) dg.

(6.2)

To identify the second term of the right-hand side of (6.2) with the second term of the
right-hand side of (6.1), first note that by the Kostant formula (2.12) and the identification

(2.6) we have on MS1

TrLm [exp(−X)] = e2πimxJ .

In addition, for each F ∈ F recall the isotypic decomposition (3.2) of its normal bundle

νΣF
: ΣF → F with respect to the induced S1-action, and write RΣF =

∑
k∈W RΣ

(k)
F for

the splitting of the curvature of the connection ∇ΣF in this decomposition. Recall from
Notation 3.1 that J : M → R takes a constant value on F denoted by J (F ) ∈ R. Then,
partial integration with respect to x yields with (1.2) as m→ +∞∫

S1

∫
MS1

Td(MS1
) TrLm [g−1] exp(−mRL/2πi)

det Σ
MS1 (1− g exp(RΣ

MS1 /2πi))
(1− ψ(g)) dg

=
∑
F∈F

∫ 1/2

−1/2

e2πimJ (F )x(1− ϕ(x))

∫
F

Td(F ) emωF∏
k∈W det

Σ
(k)
F
(1− e2πikx exp(RΣ

(k)
F /2πi))

dx

=
∑
F∈F0

∫ 1/2

−1/2

(1− ϕ(x))

∫
F

Td(F ) emωF∏
k∈W det

Σ
(k)
F
(1− e2πikx exp(RΣ

(k)
F /2πi))

dx+O(m−∞)

=
∑
F∈F0

∫
S1

(1− ψ(g))

∫
F

Td(F ) emωF

det ΣF
(1− g exp(RΣF /2πi))

dg +O(m−∞) .

(6.3)

Bringing the computations (6.2) and (6.3) together gives the result. □

6.2. Proof of Theorem 1.1. We are now ready to prove Theorem 1.1 combining Propo-
sition 6.1 with the full asymptotic expansion of the Witten integral of Theorem 5.7. Let
ϱ and ϕ be as in the previous proposition, and take ψ̃ ∈ C∞(S1,R) with compact sup-

port in the small neighborhood Ue of e ∈ S1, but such that e /∈ supp ψ̃, and write
ϕ̃(x) := ψ̃(exp(X)) ∈ C∞

c (V0,R) for the induced function. Since ψ + ψ̃ ∈ C∞
c (Ue,R)

is identically 1 close to e, Formula (6.1) also holds with the cut-off function ψ replaced by

ψ+ ψ̃. Therefore, taking the difference of the two resulting formulas, whose left-hand sides
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do not depend on the cut-off functions, Formula (5.41) applied to ϕ+ ϕ̃ and ϕ̃ implies

(6.4)
∑
F∈F0

∫
S1

ψ̃(g)

∫
F

Td(F ) emωF

det ΣF
(1− g exp(RΣF /2πi))

dg

=
∑

F∈F0
def

∫
R

∫
SF

e
mν∗SF

ωF ν∗SF
ϱF (x)

i
2π
ΘSF

x− i
2π
dΘSF

ϕ̃(x) dx

+
∑

F∈F0
indef

∫
R

∫
SF

e
mν∗SF

ωF ν∗SF
ϱF (x)

i
2π
Θ+
SF

x− i
2π
dΘ+

SF

i
2π
Θ−
SF

x− i
2π
dΘ−

SF

ϕ̃(x) dx+O(m−∞)

as m → +∞, where we took into account that the singular support of the distributions
appearing in (5.41) is given by {0} ⊂ R, so that they turn into regular integrals over R as

0 /∈ supp ϕ̃ by assumption. Now, as (6.4) holds for all test functions ψ̃ ∈ C∞
c (Ue \ {e},R),

one deduces from this for x ̸= 0 the identity of Laurent polynomials∑
F∈F0

∫
F

Td(F ) emωF∏
k∈W det

Σ
(k)
F
(1− e2πikx exp(RΣ

(k)
F /2πi))

=
∑

F∈F0
def

∫
SF

e
mν∗SF

ωF ν∗SF
ϱF (x)

i
2π
ΘSF

x− i
2π
dΘSF

+
∑

F∈F0
indef

∫
SF

e
mν∗SF

ωF ν∗SF
ϱF (x)

i
2π
Θ+
SF

x− i
2π
dΘ+

SF

i
2π
Θ−
SF

x− i
2π
dΘ−

SF

,

since both sides are polynomials in m ∈ N, so that the error term O(m−∞) vanishes.
Comparing this with the full asymptotic expansion of the Witten integral (5.41) and using
the notation introduced in (5.20), this implies

⟨Wm(ϱ), ϕ⟩ =
∫

M reg
0

emω0κ(ϱ)+
∑

F∈F0
def ,F∈F0

±

〈∫
F

Td(F ) emωF∏
k∈W det

Σ
(k)
F
(1− e2πikx± exp(RΣ

(k)
F /2πi))

, ϕ

〉

+
∑

F∈F0
indef

∫
SF

e
mν∗SF

ωFκF (ϱF )+

〈∫
F

Td(F ) emωF∏
k∈W det

Σ
(k)
F
(1− e2πikx exp(RΣ

(k)
F /2πi))

, ϕ

〉
+O(m−∞) .

Plugging this into Proposition 6.1 and expressing the distributions (5.19) and (5.36) as
distributions on the Lie group S1 we get

(6.5) RRS1

(M,Lm) =

∫
M reg

0

emω0κ(ϱ) +
∑
F∈F0

+

lim
ε→0+

∫ 1

0

χ̃
(m)
F (e2πix−ε) dx

+
∑
F∈F−

lim
ε→0+

∫ 1

0

χ̃
(m)
F (e2πix+ε) dx+

∑
F∈F0

indef

∫
SF

e
mν∗SF

ωFκF (ϱF )

+
1

2

(
lim
ε→0+

∫ 1

0

χ̃
(m)
F (e2πix−ε) dx+ lim

ε→0+

∫ 1

0

χ̃(m)(e2πix+ε) dx

)
+O(m−∞) ,
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where χ̃
(m)
F is the meromorphic function defined for any F ∈ F0 and z ∈ C by

χ̃
(m)
F (z) :=

∫
F

Td(F ) emω∏
k∈W det

Σ
(k)
F
(1− zk exp(RΣ

(k)
F /2πi))

.

Notice that the dependence on the test function ψ has cancelled out in (6.5). Now, by
a result of Meinrenken in [27, Theorem 5.1], the left-hand side of (6.5) is an arithmetic
poynomial inm ∈ N, while the terms of the right-hand side exceptO(m−∞) are polynomials
in m ∈ N, so that the error term in (6.5) actually vanishes identically in m ∈ N.

Note that, as seen for instance from [8, (2.5)], the poles of χ̃
(m)
F (z) are contained in

{0, 1} ⊂ C. Therefore, with a change of coordinates the residue theorem implies that

lim
ε→0+

∫ 1

0

χ̃
(m)
F (e2πix−ε) dx =

1

2πi
lim
ε→0+

∫
{|z|=e−ε}

χ̃
(m)
F (z)

dz

z
= Res

z=0

χ̃
(m)
F (z)

z
.

Using a change of variable z 7→ z−1 we get in the same way

(6.6) lim
ε→0+

∫ 1

0

χ̃
(m)
F (e2πix+ε) dx = Res

z=0

χ̃
(m)
F (z−1)

z
.

Inserting this in (6.5) and taking m = 1 then finally yields (1.10). □

Remark 6.2. Note that Formula (6.4) can also be obtained from the formula for the Witten
integral given in Remark 5.8 by using the explicit Formula (2.17) for the equivariant Todd
class and the explicit formula for the equivariant Euler class following for instance [2, § 8.1].
This fact is actually at the basis of the deduction of the Kirillov formula of Theorem (2.10)
from the equivariant index theorem of Theorem 2.11. In the definite setting of Section 5.2,
our method actually gives an alternative proof of this fact, using the theory of distributions
instead of the standard methods of equivariant cohomology.

6.3. Examples. Let us close by illustrating Theorem 1.1 through a family of examples.
Fix an m-tuple (k1, · · · , km) ∈ Zm with m ∈ N. We consider the product M = Πm

j=1S
2

of m 2-spheres S2 endowed with the symplectic form ω whose pullback to each S2-factor
is the standard volume form of volume 1. We regard M as equipped with the diagonal
S1-action such that ϕ ∈ R/Z ≃ S1 acts on the j-th sphere by a rotation of angle 2πkjϕ
around the z-axis of S2 ⊂ R3. This action is Hamiltonian for the moment map

(6.7) J :=
m∑
j=1

π∗
jJkj −

m∑
j=1

kj ,

where for any k ∈ Z, the map Jk : S2 → R denotes the moment map associated with
the S1-action of weight k, which is explicitly given by Jk(x, y, z) = kz in the Euclidean

coordinates x, y, z of R3 ⊃ S2. The connected components of the fixed point set MS1
are

all isolated points, given by products of north and south poles, and the constant term
subtracted in (6.7) ensures that at least the product of all north poles (where z = 1) is
contained in J −1({0}), with weights counted with multiplicity given by (k1, . . . , km) ∈ Zm.
This shows in particular that any given set of weights W ⊂ Z with any multiplicities can
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occur. Theorem 1.1 then provides an explictly computable formula for the S1-invariant
Riemann-Roch numbers RR(M,L)S

1
, and under the combinatorial condition (4.12) the

regular term can be expressed in terms of characteristic classes involving only the topology

of the resolution M̃0.
In the particular case of M = S2 × S2 with weights k1 = −1 and k2 = 1, the partial

resolution M̃0 is diffeomorphic to S2, and the quotient map Z̃ → M̃0 is a trivial S
1-principal

bundle. One then checks that we recover the usual Riemann-Roch formula for the sphere
S2 as the right-hand side of (1.10), and that the second and third terms of the right-hand

side of Formula (1.10) vanish, so that Formula (1.10) reads RR(S2 × S2, Lm ⊠ Lm)S
1
=

RR(S2, Lm) for all m ∈ N and L the prequantizing line bundle of (S2, ω), as one can easily
compute explicitly.
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