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Abstract. We introduce the notion of almost representations of Lie algebras and quantum tori, and
establish an Ulam-stability type phenomenon: every irreducible almost representation is close to a
genuine irreducible representation. As an application, we prove that geometric quantizations of the
two-dimensional sphere and the two-dimensional torus are conjugate in the semi-classical limit up to
a small error.
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1. Introduction and main results. The goal of this article is twofold. The
first objective is to establish an Ulam-stability type phenomenon for almost rep-
resentations of algebras such as compact Lie algebras and quantum tori: we show
that under certain assumptions, every irreducible almost representation of such an
algebra is close to a genuine irreducible representation. In the case of Lie algebras,
we present two versions of an Ulam-stability, associated to two different notions of
an almost representation.

Remark 1.1. While a similar problem has been studied for representation of
groups [10, 13, 21], to the best of our knowledge it has not been addressed in the
framework of representations of algebras.
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Our second goal is an application of the results on stability to geometric quan-
tization.

1.1. Almost representations. Let us pass to a more detailed discussion of
almost representations in the three cases we consider.

First case. For a finite-dimensional Hilbert space H , write ∥ · ∥op for the op-
erator norm on the space su(H) of skew-Hermitian operators acting on H . Recall
that the Lie algebra su(2) has real dimension 3, and admits a basis L1,L2,L3 ∈
su(2) satisfying the commutation relations

(1.1) [Lj ,Lj+1] = Lj+2 for all j ∈ Z/3Z.

An irreducible representation is a linear map ρ : su(2) → su(H) preserving the
commutation relations and such that the triple of skew-Hermitian operators Xj :=
ρ(Lj), j ∈ Z/3Z, does not preserve any proper subspace of H . As well known in
such a case, writing n := dimH for the complex dimension of H , we have

(1.2) X2
1 +X2

2 +X2
3 =−n2 −1

4
1.

Our first main result is as follows.

THEOREM 1.2. Fix r > 0, and for every k ∈N and c ∈R, consider the follow-
ing assumptions on a finite-dimensional Hilbert space H and a triple of operators
xj ∈ su(H), j ∈ Z/3Z:

(R1) ∥x2
1 +x2

2 +x2
3 +(k

2

4 + kc
2 )1∥op ≤ r;

(R2) ∥[xj ,xj+1]−xj+2∥op ≤ r/k for all j ∈ Z/3Z;
(R3) dimH < 2(k+ c).

Then the following holds:
(1) For any c /∈Z, there exists k0 ∈N such that the system of assumptions (R1)

and (R2) cannot be fulfilled for k ≥ k0.
(2) For any c ∈ Z, there exists k0 ∈N and C1,C2 > 0, such that for all k ≥ k0,

for any finite dimensional H and triple of operators xj ∈ su(H), j ∈ Z/3Z, satis-
fying (R1), (R2) and (R3), one has

(1.3) dimH = k+ c.

Furthermore,

(1.4) k/2−C1 ≤ ∥xj∥op ≤ k/2+C1 for all j ∈ Z/3Z,

and there exists an irreducible representation ρ : su(2)→ su(H) satisfying

(1.5) ∥xj −ρ(Lj)∥op ≤ C2 for all j ∈ Z/3Z.
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The proof of this theorem is given in Section 2. Let us point out that only the
inequalities (R1) and (R2) are needed to establish (1.4). Note also that for genuine
irreducible representations of su(2), assumption (R1) holds with r = 1/4 by (1.2),
while (R2) is valid for any r > 0 by (1.1).

Remark 1.3. Theorem 1.2 shows in particular that for k ∈ N big enough,
any triple of operators x1,x2,x3 ∈ su(H) with dimH < 2(k+ c) satisfying (R1)
and (R2) acts irreducibly, i.e., has no common proper invariant subspace V ⊂H .
Conversely, the direct sum of two k-dimensional irreducible representations satisfy
the assumptions (R1) and (R2) for c = 0, so that the assumption (R3) is optimal
in order to get irreducible representations. For a related discussion on almost irre-
ducibility, see the paragraph after Remark 3.3.

CONJECTURE 1.4. The analogue of Theorem 1.2 holds for all real compact
Lie algebras, with the appropriate relation in the left-hand side of (R1) given by
the Casimir element.

Our proof of Theorem 1.2 uses the explicit description of representations of
su(2) for all k ∈ N, and new ideas are needed in order to find a uniform proof for
all compact Lie algebras in this setting.

Second case. The next result is a counterpart of Theorem 1.2 for two-
dimensional quantum tori. Following [16, 27], recall that the quantum torus Aθ is
a C∗-algebra over C depending on a parameter θ ∈ S1 = R/Z. It is generated by
two elements W1,W2 ∈ Aθ with relations

(1.6) W ∗
1 W1 =W ∗

2 W2 = 1 and W1W2 = e2πiθW2W1.

A ∗-representation ρ : Aθ → End(H) on a Hilbert space H is then determined by
the data of two unitary operators X1 := ρ(W1), X2 := ρ(W2) ∈ End(H) satisfying
X1X2 = e2πiθX2X1. The C∗-algebra Aθ admits an irreducible finite-dimensional
∗-representation whenever e2πiθ is an n-th prime root of unity, and in that case we
have dimH = n.

THEOREM 1.5. Fix r > 0, and for any c ∈ R and k ∈ N, consider the follow-
ing assumptions on a finite-dimensional Hilbert space H and a pair of operators
x1,x2 ∈ End(H):

(R1) ∥xjx∗j −1∥op ≤ r/k3 for all j = 1,2;
(R2) ∥x1x2 −e2iπ/(k+c)x2x1∥op ≤ r/k3;
(R3) dimH < 2(k+ c).

Then the following holds:
(1) For any c /∈Z, there exists k0 ∈N such that the system of assumptions (R1),

(R2), and (R3) cannot be fulfilled for k ≥ k0.
(2) For any c ∈ Z, there exists k0 ∈ N and C > 0 such that for all k ≥ k0, for

any finite dimensional H and a pair of operators x1,x2 ∈ End(H), satisfying (R1),
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(R2) and (R3), one has

(1.7) dimH = k+ c.

Furthermore, there exists a ∗-representation ρ : Aθ → End(H) with θ = 1/(k+ c)

such that

(1.8) ∥xj −ρ(Wj)∥op ≤ C/k3/2 for all j = 1,2.

The proof follows the same strategy as the proof of Theorem 1.2, see Sec-
tion 2.2 below.

Third case. In Section 3, we consider another notion of an irreducible almost
representation t : g → su(H) of a compact Lie algebra g. It involves the Casimir
element in the adjoint representation. As explained in Remark 3.3, this definition
is weaker than the previous notion of an almost representation in the case of the
Lie algebra su(2), which is necessary for applications to geometric quantization of
the two-sphere.

Take any orthonormal basis e1, . . . ,en in g with respect to the Killing form.
We define, in the context of almost representations, a counterpart of the Casimir
element in the adjoint representation, called almost-Casimir, by

Γ : su(H)−→ su(H)

σ 7−→ −
n∑
i=1

[[σ,t(ei)], t(ei)].
(1.9)

We define almost representations as linear maps t : g → su(H) which satisfy ap-
proximate commutation relations, and such that Γ is invertible. Theorem 3.2 below
provides an upper bound for the distance between such a t and a genuine irre-
ducible representation of g in terms of the operator norm of the inverse of Γ. Here
we adapt a Newton-type method as in [21].

1.2. Preliminaries on quantization. Geometric quantization is a mathe-
matical recipe behind the quantum-classical correspondence, a fundamental phys-
ical principle stating that quantum mechanics contains classical mechanics in the
limiting regime when the Planck constant h̄ tends to zero. In Section 4, we ap-
ply Theorems 1.2 and 1.5 to show that all geometric quantizations of the two-
dimensional sphere and the torus, satisfying the axioms of Definition 1.6 below,
are conjugate to each other up to an error of order O(h̄).

When the classical phase space is represented by a closed (i.e., compact with-
out boundary) symplectic manifold (M,ω), geometric quantization is a linear cor-
respondence f 7→ Th̄(f) between classical observables, i.e., real functions f ∈
C∞(M) on the phase space M , and quantum observables, i.e., Hermitian operators
Th̄(f) ∈ L(Hh̄) on a complex Hilbert space Hh̄. This correspondence is assumed
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to respect, in the leading order as the Planck constant h̄ tends to 0, a number of
basic operations.

Write {·, ·} for the Poisson bracket of (M,ω), defined on any f,g ∈ C∞(M)

by

{f,g} :=−ω(sgradf,sgradg),

where for any f ∈C∞(M), the associated Hamiltonian vector field sgradf over M
is defined by

ω(·,sgradf) = df.

For any complex valued function f ∈ C∞(M,C), we write ∥f∥∞ := maxx∈M |f |
for its uniform norm.

Definition 1.6. Given a sequence {Hk}k∈N of finite-dimensional complex
Hilbert spaces, an associated geometric quantization is a collection of R-linear
maps {Tk : C∞(M) → L(Hk)}k∈N with Tk(1) = 1 for all k ∈ N, satisfying the
following axioms as k →+∞,

(P1) ∥Tk(f)∥op = ∥f∥∞ +O(1/k);
(P2) [Tk(f),Tk(g)] =

i
kTk({f,g})+O(1/k2);

(P3) Tk(f)Tk(g) = Tk(fg+
1
kC1(f,g)+

1
k2C2(f,g))+O(1/k3).

In axiom (P3), we extend {Tk : C∞(S2,C) → End(Hk)}k∈N by C-linearity, and
the maps C1,C2 : C∞(S2)×C∞(S2) → C∞(S2,C) are bi-differential operators.
The remainders are taken with respect to the operator norm, uniformly in the CN -
norms of f,g ∈ C∞(S2) for some N ∈ N.

In Definition 1.6, the integer k ∈ N represents a quantum number, and should
be thought as inversely proportional to the Planck constant. Then the limit k→+∞

describes the so-called semi-classical limit, when the scale gets so large that we re-
cover the laws of classical mechanics from those of quantum mechanics. In partic-
ular, the axiom (P2) is the celebrated Dirac condition, relating the Poisson bracket
on classical observables to the commutator bracket on quantum observables.

Example 1.7. In the case M admits a complex structure J ∈ End(TM) com-
patible with ω and the De Rham cohomology class [ω]/2π is integral, the exis-
tence of geometric quantizations was established by Bordemann, Meinrenken and
Schlichenmaier [5], using the theory of Boutet de Monvel and Guillemin [6]. Their
construction is called Berezin-Toeplitz quantization, and goes as follows. Let L be
a holomorphic Hermitian line bundle with Chern curvature equal to −iω, and for
any k ∈ N, write Lk for the k-th tensor power of L. We define the Hilbert space
Hk as the subspace of all global holomorphic sections of Lk inside the Hilbert
space L2(M,Lk) of L2-sections of Lk. With this language, the Toeplitz operators
Tk(f)∈L(Hk) act by multiplication by f ∈C∞(M) composed with the orthogonal
projection to Hk inside L2(M,Lk). In the case of the sphere S2 and the torus T2,
by an appropriate shift of the parameter k ∈ N, this construction actually produces
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a discrete family of geometric quantizations depending on m ∈ N and satisfying
dimHk = k+m.

While the construction given above is rather straightforward, verification of the
axioms of Definition 1.6 is highly non-trivial. For comprehensive introductions to
Berezin-Toeplitz quantization, see for instance [22, 23, 29].

The Berezin-Toeplitz quantizations associated to two distinct complex struc-
tures are essentially different, so that even for the simplest symplectic manifolds
(M,ω), this construction produces a large variety of examples. As shown by
Ma and Marinescu [24], Xu [30] and Charles [9], for such quantizations, the
bi-differential operator C1(f,g) is proportional to the Hermitian product of the
Hamiltonian vector fields of f and g, while the bi-differential C2(f,g) involves
the Ricci curvature.

A different, albeit related, mathematical model of quantization is deformation
quantization [3], which is an h̄-linear associative algebra on the space C∞(M)[[h̄]]

such that for all f,g ∈ C∞(M),

(1.10) f ∗g = fg+ h̄C1(f,g)+ h̄2C2(f,g)+ · · · ,

with C1(f,g)−C1(g,f) = i{f,g}. Here the Planck constant h̄ plays the role of a
formal deformation parameter, and the operation (1.10) is called a star-product. In
Section 4.3, we consider geometric quantizations satisfying an extension of axiom
(P3), given in Definition 4.6, to an asymptotic expansion up to O(1/km) for any
m ∈ N. This defines a star product via the formal relation Th̄(f)Th̄(g) = Th̄(f ∗g)
with h̄ = 1/k. In particular, the Berezin-Toeplitz quantizations described above
satisfy this extension of axiom (P3), and thus induce a star-product [5, 28, 14]
over (M,ω). While deformation quantizations of closed symplectic manifolds are
completely classified up to star equivalence given by formula (4.68) below, the
classification of geometric quantizations up to conjugation and an error of order
O(1/km) with given m ∈ N is not yet understood. The study of this classification
is the main motivation of this paper.

1.3. Applications to quantization. The second main result of this paper is
as follows.

THEOREM 1.8. Assume that (M,ω) = S2 or T2 endowed with the standard
area form of volume 2π. Let {Tk : C∞(M)→L(Hk)}k∈N be a geometric quanti-
zation, and assume that

(1.11) limsup
k→+∞

dimHk/k < 2.

Then there exists an integer m ∈ Z such that for all k ∈ N big enough, we have

(1.12) dimHk = k+m.
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Furthermore, if {Qk : C∞(M) → L(Hk)}k∈N is another geometric quantization
associated to the same sequence of Hilbert spaces, there exists a sequence of uni-
tary operators {Uk : Hk → Hk}k∈N such that for any f ∈ C∞(M), there exists
C > 0 such that for any k ∈ N, we have

(1.13) ∥U−1
k Qk(f)Uk−Tk(f)∥op ≤ C/k.

From a physical point of view, property (1.13) is the statement that two dif-
ferent quantizations of the same classical phase space reproduce the same physics
at the semi-classical limit, when k → +∞. Two geometric quantizations satisfy-
ing (1.13) are called semi-classically equivalent. Note on the other hand that for
any m ∈ N, a geometric quantization satisfying (1.12) can be realized through the
construction of Example 1.7. We thus get the following corollary.

COROLLARY 1.9. Under the dimension assumption (1.11), every geometric
quantization of the sphere or the torus is semi-classically equivalent to a Berezin-
Toeplitz quantization of Example 1.7.

The semi-classical equivalence of the Berezin-Toeplitz quantization and the
Kostant-Souriau quantization was first shown by Schlichenmaier in [28]. For
Berezin-Toeplitz quantizations associated with a different compatible complex
structure, Corollary 1.9 follows from the work of Charles [8]. These results were
established for more general symplectic manifolds than the sphere and the torus,
which leads to the following conjecture.

CONJECTURE 1.10. Two geometric quantizations of a closed symplectic man-
ifold (M,ω) associated with sequences of Hilbert spaces of the same dimension
are semi-classically equivalent.

In particular, it is not completely clear to what extent the dimension assump-
tion (1.11) can be relaxed. An affirmative answer to Conjecture 1.4 should yield
an affirmative answer to Conjecture 1.10 in the case of coadjoint orbits of general
compact Lie groups, at least with the appropriate assumption on the dimension.

Remark 1.11. The dimension assumption (1.11) of Theorem 1.8 is natural from
a physical point of view. In fact, equation (1.15) follows from an additional trace
axiom for geometric quantizations, which is satisfied for Berezin-Toeplitz quanti-
zations and which we discuss in Section 4.3. For geometric quantizations of closed
symplectic manifolds (M,ω) with dimM = 2d, this trace axiom implies the fol-
lowing estimate as k →+∞,

(1.14) dimHk =

(
k

2π

)d

Vol(M,ω)+O(kd−1).

This reflects the physical principle that dimHk approximately equals the maximal
number of pair-wise disjoint quantum cells, i.e. cubes of volume (2πh̄)d, inside the
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classical phase space (M,ω). When dimM = 2, formula (1.14) reads

(1.15) dimHk = k+O(1),

so that the dimension assumption (1.11) holds in particular for geometric quanti-
zations of M = S2 or T2 satisfying the trace axiom.

In Theorem 4.4, we consider geometric quantization satisfying a trace axiom,
given in Definition 4.3, and we express the asymptotics of the trace in terms of
the bi-differential operator C2 of axiom (P3). In Corollary 4.7, we show that this
implies the equality of the usual trace with the canonical trace of the induced star
product up to O(1/k), defined by formula (4.69) below. Finally, in Theorem 4.5,
we show how Theorem 1.5 can be applied to get an extension of Theorem 1.8
for quantizations of the torus T2 which are invariant by translation, making a first
step towards the classification of geometric quantizations up to order O(1/km)

with m> 1.

Acknowledgments. L. Polterovich thanks the University of Chicago, where a
part of this paper was written, for hospitality and an excellent research atmosphere.
We thank D. Treschev for a useful comment, and O. Shabtai for an attentive reading
of the manuscript and pointing out a number of mistakes.

2. Proofs for su(2) and quantum torus. Let H be a Hilbert space of com-
plex dimension dimH = n ∈ N, and recall that an operator A ∈ End(H) is called
normal if it can be diagonalized in an orthonormal basis. The following Lemma on
the existence of quasimodes will be a basic tool in this Section.

LEMMA 2.1. Let A ∈ End(H) be normal, and assume that v,w ∈ H , v ̸= 0,
and α ∈ C satisfy

(2.1) Av = αv+w.

Then there exists λ ∈ Spec(A) satisfying

(2.2) |λ−α| ≤ ∥w∥
∥v∥

.

Furthermore, for any δ > 0, let Vδ ⊂ H be the direct sum to the eigenspaces of
eigenvalues η ∈ Spec(A) satisfying |η − α| < δ. Then there exists e ∈ Vδ with
∥e∥= 1 such that

(2.3)
∥∥v−∥v∥e

∥∥≤ 2
∥w∥
δ

.

Proof. Let {ej}nj=1 be an orthonormal basis of H diagonalizing A, with com-
plex eigenvalues {λj}nj=1. Consider v,w ∈H and α ∈ C satisfying formula (2.1).
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Then we have

∥w∥= ∥(A−α)v∥ ≥ min
1≤j≤n

|λj −α|∥v∥,(2.4)

which implies that there exists 1 ≤m≤ n such that λm satisfies formula (2.2).
Fix now δ > 0. Then formula (2.1) implies

∥w∥2 =
∑

1≤j≤n

|λj −α|2 |⟨v,ej⟩|2 ≥
∑

|λj−α|≥δ

|λj −α|2 |⟨v,ej⟩|2

≥ δ2
∥∥∥v− ∑

|λm−α|<δ

⟨v,em⟩em
∥∥∥2
,

(2.5)

Write ẽ :=
∑

|λm−α|<δ⟨v,em⟩em ∈ Vδ. Then this implies in particular that

(2.6) ∥w∥ ≥ δ∥v− ẽ∥ ≥ δ
∣∣∥v∥−∥ẽ∥

∣∣.
Taking e := ẽ/∥ẽ∥, we then get

(2.7)
∥∥v−∥v∥e

∥∥≤ ∥v− ẽ∥+
∣∣∥v∥−∥ẽ∥

∣∣≤ 2
∥w∥
δ

.

This proves the result. □

2.1. Case of the Lie algebra su(2). A triple of skew-Hermitian operators
X1,X2,X3 ∈ su(H) is said to generate an irreducible representation of su(2) if
they satisfy the commutation relations (1.1) and do not preserve any proper sub-
space of H . From the basic representation theory of su(2), this is equivalent with
the fact that

X2
1 +X2

2 +X2
3 =−

(
n2 −1

4

)
1 and

[Xj ,Xj+1] =Xj+2 for all j ∈ Z/3Z.
(2.8)

Set the ladder operators to be

(2.9) Y± :=±iX1 +X2 ∈ End(H).

Then there exists an orthonormal basis {ej}nj=1 of H such that for all m ∈ N with
0 ≤m≤ n−1, we have

X3en−m = i

(
n−1

2
−m

)
en−m,

Y±en−m =∓

√
n2 −1

4
−
(
n−1

2
−m

)2

∓
(
n−1

2
−m

)
en−m±1.

(2.10)
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Note that the ∓ sign in front of the square root in the the second line of (2.10)
is a matter of convention, as one can pass to the opposite sign by a change of
orthonormal basis ej 7→ (−1)jej for all 1 ≤ j ≤ n.

Conversely, if we have operators X3,Y+,Y− ∈ End(H) satisfying (2.10) in an
orthonormal basis, then setting X1 := i(Y−−Y+)/2 and X2 := (Y−+Y+)/2, we
get three operators X1,X2,X3 ∈ su(2) generating an irreducible representation of
su(2) on H .

Let us now compare some basic consequences of the axioms (R1) and (R2)
of Theorem 1.2 with the basic theory of representations of su(2) described at the
beginning of the Section. For any k ∈ N, introduce the ladder operators

(2.11) y± :=±ix1 +x2 ∈ End(Hk),

which satisfy y∗± =−y∓. Then axiom (R2) translates to

(2.12)
∥∥± iy±− [x3,y±]

∥∥
op =O(1/k).

On the other hand, one has

y+y− = x2
1 +x2

2 + i[x1,x2],

y−y+ = x2
1 +x2

2 − i[x1,x2],
(2.13)

so that axioms (R1) and (R2) imply∥∥∥∥y+y−+
(k+ c)2

4
1+x2

3 − ix3

∥∥∥∥
op
=O(1),∥∥∥∥y−y++

(k+ c)2

4
1+x2

3 + ix3

∥∥∥∥
op
=O(1).

(2.14)

Proof of Theorem 1.2. Let us fix c ∈ R and r > 0, and consider all triples of
operators x1,x2,x3 ∈ su(H), j ∈ Z/3Z satisfying (R1) and (R2) for some finite-
dimensional Hilbert space H . All the estimates in the proof are with respect to the
Hilbert norm as k →+∞.

The proof will be divided into 3 steps. In Step 1, we use the ladder opera-
tors (2.11) to construct k+ c distinct eigenvectors of x3 ∈ su(H) with distinct
eigenvalues, showing the first statement of Theorem 1.2 and the inequality (1.4).
In Step 2, we show that, if these eigenvectors do not generate the whole Hilbert
space H , we can repeat the construction of Step 1 to get another set of k+ c dis-
tinct eigenvectors of x3 ∈ su(H), thus establishing formula (1.3) on the dimension
under the assumption (R3). In Step 3, we define a representation ρ : su(2)→ su(H)

via formulas (2.10) for the basis constructed in Step 1, and establish (1.5).
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Step 1. Let λk ∈ R be the highest eigenvalue of the Hermitian endomorphism
−ix3 ∈ End(H), and let ek ∈H with ∥ek∥= 1 be such that

(2.15) x3ek = iλkek.

Using formula (2.12), we get the estimate

(2.16) x3(y+ek) = i(λk+1)y+ek+O(1/k).

Applying Lemma 2.1 to A=−ix3, v = y+ek, w =O(1/k), and using the fact that
λk ∈ R is the highest eigenvalue of −ix3, we get the estimate ∥y+ek∥ =O(1/k).
Using now formula (2.14) and Cauchy-Schwartz inequality, this implies

(2.17) O(1/k2) = ∥y+ek∥2 =−⟨y−y+ek,ek⟩=
(k+ c)2

4
−λ2

k−λk+O(1),

which readily leads to the estimate

(2.18) λk =
k+ c−1

2
+O(1/k).

The strategy of the proof is based on a recursive estimate on the eigenvalues
of −ix3 using the lowering operators, which we describe now. We will use the
elementary fact that for any ϵ > 0, there exists δ > 0 such that for all k ∈ N and all
λ ∈ R, we have

− k+ c−1
2

+ ϵ < λ <
k+ c

2
− ϵ

implies
(k+ c)2

4
−λ2 +λ > δ(k+ c).

(2.19)

Now if f ∈ H with ∥f∥ = 1 is an eigenvector of −ix3 with eigenvalue λ ∈ R
satisfying (2.19), we can use formula (2.14) and Cauchy-Schwartz inequality to
get

∥y−f∥2 =−⟨y+y−f,f⟩=
(k+ c)2

4
−λ2 +λ+O(1)

≥ δk+O(1).
(2.20)

On the other hand, formula (2.12) implies

(2.21) x3(y−f) = i(λ−1)y−f +O(1/k).

We can thus apply Lemma 2.1 with A = −ix3, v = y−f and w = O(1/k) to get
an eigenvector f̃ ∈ H of −ix3 with associated eigenvalue λ̃ ∈ R satisfying the
recursive estimates

(2.22) λ̃= λ−1+O(1/k3/2).
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We emphasize that the appearance of the exponent 3/2 in the recursive esti-
mate (2.22) is crucial for the rest of the proof.

Fix ϵ > 0 small enough in (2.19), and recall the estimate (2.18) for the highest
eigenvalue of −ix3. Let us prove by induction that for all m ∈ N satisfying 0 ≤
m < k+ c, there is a normalized eigenvector ek−m ∈ H of −ix3 with associated
eigenvalue λk−m ∈ R satisfying

(2.23) λk−m = λk−m+mO(1/k3/2).

Note that this is trivially satisfied for m= 0. On the other hand, we see from (2.18)
that for any 0 ≤m<k+c−1, the right-hand side of (2.23) satisfies (2.19) as soon
as k ∈ N is big enough. Thus if (2.23) is satisfied for some 0 ≤m< k+ c−1, we
can apply the recursive estimate (2.22) to λ= λk−m to get

(2.24) λk−m−1 = λk−m−1+O(1/k3/2),

which implies (2.23) with m replaced by m+1. This shows by induction that for
all m ∈ N satisfying 0 ≤m< k+ c, we have

(2.25) λk−m =
k+ c−1

2
−m+O(1/

√
k).

Let us now write λ− ∈ R for the lowest eigenvalue of −ix3. The argument
leading to the estimate (2.18) using y− instead of y+ leads to the estimate

(2.26) λ− =−k+ c−1
2

+O(1/k).

Assume without loss of generality that c≥ 0. Suppose, on the contrary, that c /∈ Z.
Then m = ⌊k+ c⌋ < m+ c. Applying (2.25), we get that λk−m is smaller than
the lowest eigenvalue (2.26) for k ∈ N big enough. This contradiction shows that
necessarily c ∈ Z, which proves the first statement of Theorem 1.2. We also get
that ∥x3∥op = k/2+O(1), and by symmetry of the assumptions (R1) and (R2) in
j ∈ Z/3Z, this yields (1.4).

Step 2. Let us now assume that (R3) holds, in addition to (R1) and (R2). Our
goal is to establish formula (1.3) on the dimension. By the first statement of The-
orem 1.2 and through the shift k 7→ k+ c, we will assume without loss of gen-
erality that c = 0. Using the estimate (2.25), we get a set of eigenvalues of −ix3

parametrized by m ∈ N with 0 ≤m≤ k−1, which are pairwise distinct for k ∈ N
big enough. This implies that dimH ≥ k.

To establish formula (1.3) with c = 0, let us consider k ∈ N big enough and
assume on the contrary that dimH ≥ k+ 1. Let E ⊂ H be the direct sum of 1-
dimensional eigenspaces associated with each of the eigenvalues (2.25), so that
dimE = k for k ∈ N big enough, and E is a proper subspace of H . In particular,
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there exists an eigenvalue µ∈R of −ix3 admitting an eigenvector eµ /∈E. Note that
µ has to lie between the highest eigenvalue (2.18) and the lowest eigenvalue (2.26).

Furthermore, we claim that for any ϵ > 0, there exists k0 ∈ N such for any
k ≥ k0, there exists 0 ≤m0 ≤ k−1 such that

(2.27) |µ−λk−m0 |< 2ϵ.

Indeed, considering (2.19) and (2.25) with c= 0, we can use repeatedly the recur-
sive estimate (2.22) as in Step 1 to produce eigenvalues

(2.28) µm := µ−m+mO(1/k3/2),

for all m ∈N such that µm >−k−1
2 + ϵ. Assume, on the contrary, that (2.27) is not

satisfied for some 0 ≤m0 ≤ k−1. Then we can use the recursive estimate (2.22)
one more time to produce an eigenvalue µ− satisfying µ− < −k−1

2 − ϵ. Thus, µ−
is smaller than the lowest eigenvalue (2.26). This contradiction proves (2.27).

Now for any m ∈ N and θ > 0, write

(2.29) Vm(θ) :=
⊕

|λ−λk−m|<θ

Eλ,

where Eλ := {v ∈ H | −ix3v = λv} for all λ ∈ R. By assumption, there exists
an eigenvector eµ ∈H associated with µ which does not belong to the eigenspace
associated with λk−m0 in E ⊂H . Thus inequality (2.27) implies

(2.30) dimVm0(2ϵ)≥ 2.

Note that for k ∈ N big enough, we have either m0 > 0 or m0 < k− 1 (or both).
Without loss of generality, let us assume that m0 < k−1.

We claim that

(2.31) dimVm(2ϵ+mO(1/k3/2))≥ 2,

for every m0 ≤ m ≤ k− 1. The proof goes by induction in m. We have already
seen that (2.31) holds true for m = m0. Assume it is valid for some m < k− 1.
Then there exists an eigenvalue µ̃m ∈ R of −ix3 satisfying

(2.32) |λk−m− µ̃m| ≤ 2ϵ+mO(1/k3/2),

with associated eigenvector orthogonal to the subspace E ⊂ H . Applying the re-
cursive estimate (2.22) and comparing with (2.24), we get an eigenvalue µ̃m+1 ∈R
of −ix3, which satisfies

(2.33) |λk−m−1 − µ̃m+1|< 2ϵ+(m+1)O(1/k3/2).

Hence if µ̃m+1 ̸= λk−m−1, the estimate (2.31) for m+ 1 holds automatically. We
can thus assume without loss of generality that µ̃m+1 = λk−m−1. In this case, the
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recursive estimate (2.22) implies

(2.34) |λk−m− µ̃m|=O(1/k3/2).

Consider now two normalized orthogonal eigenvectors f1 ∈ E and f2 /∈ E respec-
tively associated with λk−m and µ̃m. Applying the second part of Lemma 2.1 with
δ = 2ϵ to y−f1 and y−f2, we get vectors

(2.35) f̃1, f̃2 ∈ Vm+1(2ϵ+O(1/k3/2))

with ∥f̃1∥= ∥f̃2∥= 1 such that for j = 1,2, we have

(2.36)
∥∥y−fj −∥y−fj∥f̃j

∥∥=O(1/k).

On the other hand, using formula (2.14) and the fact that ⟨f1,f2⟩= 0, we have

(2.37) ⟨y−f1,y−f2⟩=−⟨y+y−f1,f2⟩=O(1).

Furthermore, formula (2.20) shows that for j = 1,2, we have

(2.38) ∥y−fj∥2 ≥ δk+O(1).

This gives

(2.39) ⟨f̃1, f̃2⟩=
1

∥y−f1∥
1

∥y−f2∥
⟨y−f1,y−f2⟩+O(1/k2) =O(1/k2),

so that f̃1, f̃2 ∈ Vm+1(2ϵ+O(1/k3/2)) are linearly independent for k ∈ N big
enough. This finishes the proof of claim (2.31).

It follows from (2.31) that for all m0 ≤m≤ k−1, we have

(2.40) dimVm(2ϵ+O(1/
√
k))≥ 2.

On the other hand, if m0 > 0, we can repeat the same process starting with Vm0(2ϵ)
using y+ instead of y− to get (2.40) for all m ∈ N with 0 ≤m≤ k−1.

By definition (2.29), the subspaces Vm(2ϵ+O(1/
√
k)) are pairwise orthogo-

nal for each m ∈ N as soon as k ∈ N is big enough, and we have

(2.41) dim
⊕

0≤m≤k−1

Vm

(
2ϵ+O(1/

√
k)
)
≥ 2k.

This contradicts the assumption (R3) for c = 0, and shows that dimH = k, thus
proving (1.3).
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Step 3. We are now left with constructing a representation satisfying (1.5).
Assuming without loss of generality that c = 0, the argument above shows in par-
ticular that all eigenvalues of −ix3 are simple and satisfy formula (2.25) for all
m ∈ N with 0 ≤m≤ k−1. Using Lemma (2.1), we get a normalized eigenvector
em−1 ∈H of −ix3 associated with λm−1 satisfying

⟨y−em,em−1⟩= ⟨∥y−em∥em−1,em−1⟩+O(1/k)

= ∥y−em∥+O(1/k).
(2.42)

Starting with any eigenvector ek of −ix3 associated with λk, we can then construct
an orthonormal eigenbasis {ej}kj=1 for x3 associated to the sequence of eigenvalues
{λj}kj=1 and satisfying formula (2.42) for all 1 ≤m≤ k. Let us now note that for
any λ ∈ R, using in particular formula (2.19), we have that

− k−1
2

+ ϵ < λ <
k

2
− ϵ

implies
∣∣∣∣ ddλ

(√
k2 −1

4
−λ2 +λ

)∣∣∣∣=O(
√
k),

(2.43)

Via the first line of (2.20) and formula (2.25), this implies for all 1 ≤m≤ k that

(2.44) ∥y−ek−m∥=

√
k2 −1

4
−
(
k−1

2
−m

)2

+

(
k−1

2
−m

)
+O(1).

On the other hand, for all j ̸=m− 1, using formula (2.12) and Cauchy-Schwartz
inequality, we get

i⟨y−em,ej⟩= ⟨[x3,y−]em,ej⟩+O(1/k)

= i(λm−λj)⟨y−em,ej⟩+O(1/k).
(2.45)

Now formula (2.18) implies that |λj −λm− 1| ≥ 1/2 as soon as j ̸= m− 1 and
k ∈ N big enough, so that (2.45) implies

(2.46) ⟨y−em,ej⟩=O(1/k) for j ̸=m−1,

and we get analogous formulas for y+ =−y∗− by definition (2.11).
In the orthonormal basis {ej}kj=1 of H constructed above and following (2.10)

and (2.8), let us now set

X3 en−m := i

(
k−1

2
−m

)
en−m,

Y± en−m :=∓

√
k2 −1

4
−
(
k−1

2
−m

)2

∓
(
k−1

2
−m

)
en−m±1,

(2.47)

for all 0 ≤ m ≤ k− 1. By the basic representation theory of su(2) described at
the beginning of the section and the definition (2.11) of y±, to show Theorem 1.2,
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it suffices to show that ∥x3 −X3∥op = O(1) and ∥y±−Y±∥op = O(1). Now for-
mula (2.23) implies immediately that

(2.48) ∥x3 −X3∥op =O(1/
√
k).

On the other hand, for all 1 ≤ j, m≤ k, formulas (2.42), (2.44), (2.46) and (2.47)
yield

⟨(y±−Y±)ej ,em⟩=O(1/k) for m ̸= j±1,

⟨(y±−Y±)em,em±1⟩=O(1).
(2.49)

Decompose the matrix into y±−Y± = A+B, where all coefficients of A vanish
except Am,m±1 =O(1) for all 1 ≤m≤ k and where Bjm =O(1/k) for all 1 ≤ j,
m≤ k. Then we readily get ∥A∥op =O(1), while by Cauchy-Schwartz we compute

∥B∥2
op = max

∥v∥=1

k∑
j=1

∣∣∣∣∣
k∑

m=1

Bjm⟨em,v⟩

∣∣∣∣∣
2

≤ k max
1≤j≤k

k∑
m=1

|Bjm|2

≤ k2O(1/k2) =O(1).

(2.50)

By the triangle inequality this gives

(2.51) ∥y±−Y±∥op ≤ ∥A∥op +∥B∥op =O(1).

We get (1.5) for the representation defined by (2.47) as described in the beginning
of the section. This concludes the proof of Theorem 1.2. □

2.2. Case of the quantum torus. A pair of unitary operators X1,X2 ∈
End(H) generates an irreducible representation of the quantum torus A1/n if it
satisfies a commutation relation

(2.52) X1X2 = e2πi/nX2X1.

Diagonalizing X1 in an orthonormal basis {em}nm=1 of H , we readily get that
X1,X2 ∈ End(H) generate an irreducible representation of the quantum torus if
and only if there exists θ1,θ2 ∈ R/nZ such that

X1 := diag
(
e2πi θ1

n ,e2πi θ1+1
n , . . . ,e2πi θ1+m

n , . . . ,e2πi θ1+n−1
n

)
,

X2em := e2πi θ2
n em+1 for all m ∈ Z/kZ.

(2.53)

Note that in this case X1 and X2 have no non-trivial common invariant subspace.
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Proof of Theorem 1.5. All the estimates in the proof are with respect to the
Hilbert norm as k → +∞, and only depend otherwise on c ∈ R and r > 0 in the
statement of the Theorem.

Consider the polar decomposition xj = PjUj , where Uj ∈ End(H) is unitary
and Pj ∈End(H) is positive Hermitian for each j = 1,2. Then axiom (R1) is equiv-
alent to ∥P 2

j −1∥op =O(1/k3), which implies that ∥Pj −1∥op =O(1/k3). Using
the submultiplicativity of the operator norm, we then see that the unitary parts
U1,U2 ∈ End(H) also satisfy the axioms (R1) and (R2), and that ∥xj −Uj∥op =

O(1/k3) for each j = 1,2. We are thus reduced to the case of x1,x2 ∈ End(H) be-
ing unitary endomorphisms. In particular, they are normal and Lemma 2.1 applies.

The proof of Theorem 1.5 will be divided into 3 steps, following the structure
of the proof of Theorem 1.2. In Step 1, we construct a set of eigenvectors for x1 ∈
End(H) using x2 ∈ End(H) as a ladder operator. Then the only notable difference
with the proof of Theorem 1.2 is that in the case of Theorem 1.5, Statement 1 and
formula (1.7) on the dimension depend on each other, and are established together
in Step 2.

Step 1. Let e ∈H be an eigenvector of x1 ∈ End(H), and write λ0 ∈C for the
associated eigenvalue. Then axiom (R2) implies

(2.54) x1(x2e) = λ0e
2πi
k+cx2e+O(1/k3).

As x2 is unitary by assumption, we have ∥x2e∥ = 1, so that Lemma 2.1, with
A= x1, v = x2e and w = O(1/k3), implies the existence of a normalized eigen-
vector e1 ∈H of x1 with associated eigenvalue λ1 ∈ C satisfying

(2.55) λ1 = λ0e
2πi
k+c +O(1/k3).

We then obtain by induction eigenvalues λm ∈ C for all 0 ≤m< k+ c satisfying

λm = λ0e
2πim
k+c +mO(1/k3)

= λ0e
2πim
k+c +O(1/k2).

(2.56)

As |λm| = 1 by unitarity, these eigenvalues are distinct for all 0 ≤ m < k+ c as
soon as k ∈N is big enough. In particular, we have dimH ≥ k+c as soon as k ∈N
is big enough.

Step 2. Our goal now is to establish Statement 1 and formula (1.7) of The-
orem 1.5. Note that if c /∈ Z, then λ0 ̸= λ0e

2πi⌊k+c⌋
k+c , and one can apply the con-

struction of Step 1 once more to get distinct eigenvalues of the form (2.56) for
all 0 ≤ m < k+ c+ 1, so that in particular dimH ≥ k+ c+ 1 for k ∈ N big
enough. Hence to show that c ∈ Z and dimH = k+ c, it suffices to show that
dimH < k+ c+1.
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Assume by contradiction that dimH ≥ k+c+1. Let E ⊂H be the direct sum
of 1-dimensional eigenspaces associated with each of the eigenvalues (2.56) for
all 0 ≤m< k+ c, so that dimE < k+ c+1, and E is a proper subspace of H . In
particular, there exists an eigenvalue λ̃0 ∈C of x1 admitting an eigenvector ẽ0 /∈E.
Assume first that we have

(2.57) |λ̃0 −λm| ≥ π

2k
,

for all 0 ≤m< k+ c. Then we can repeat the reasoning of Step 1 to construct by
induction eigenvalues λ̃m ∈ C for all 0 ≤m< k+ c satisfying

(2.58) λ̃m = λ̃0e
2πim
k+c +O(1/k2).

As |λ̃m|= 1 by unitarity, they are all distinct for all 0 ≤m<k+c as soon as k ∈N
is big enough, and (2.57) also implies that they are distinct from the set (2.56)
for k ∈ N big enough. This implies in particular that dimH ≥ 2(k+ c), which
contradicts the assumption of the Theorem.

Let us now consider the remaining case

(2.59) |λ̃0 −λm0 |<
π

2k
,

for some 0 ≤m0 < k+ c. For any m ∈ N and µ > 0, write

(2.60) Vm(µ) :=
⊕

|λ−λm|<µ

Eλ,

where Eλ := {v ∈ H | x1v = λv} for all λ ∈ R. Now by assumption, there ex-
ists an eigenvector ẽ0 ∈ H of x1 associated with λ̃0 which does not belong to a
1-dimensional eigenspace associated with λm0 . The assumption (2.59) translates to

(2.61) dimVm0

( π

2k

)
≥ 2.

We claim that

(2.62) dimVm

( π

2k
+mO(1/k3)

)
≥ 2,

for every m0 ≤ m ≤ k+ c. The proof goes by induction in m, the case m = m0

being given by (2.61). Assume that it is valid for some m< k−1. Then there exist
an eigenvalue µm ∈ R of x1 satisfying

(2.63) |λm−µm|< π

2k
+mO(1/k3),

with associated eigenvector orthogonal to the subspace E ⊂H . Then applying the
recursive process of Step 1, we get an eigenvalue µm+1 ∈ R of x1 satisfying

(2.64) |λm+1 −µm+1|<
π

2k
+(m+1)O(1/k3),



ALMOST REPRESENTATIONS OF ALGEBRAS AND QUANTIZATION 1605

Hence if λm+1 ̸= µm+1, the claim (2.62) for m+ 1 holds automatically. We can
thus assume without loss of generality that λm+1 =µm+1. In this case, the recursive
process of Step 1 implies

(2.65) |λm−µm|=O(1/k3).

Consider now two normalized orthogonal eigenvectors f1 ∈ E and f2 /∈ E respec-
tively associated with λm and µm. Applying the second part of Lemma 2.1 with
w =O(1/k3) and δ = π/2k applied to v = x2f1 and x2f2 respectively, and using
the unitarity of x2 ∈ End(H), we get vectors

(2.66) f̃1, f̃2 ∈ Vm+1

( π

2k
+O(1/k3)

)
with ∥f̃1∥= ∥f̃2∥= 1 such that for all j = 1,2, we have

(2.67) x2fj = f̃j +O(1/k2).

This implies

(2.68)

∥∥f̃1 − f̃2
∥∥≥ ∥f1 −f2∥(1+O(1/k2)) =

√
2(1+O(1/k2)),∥∥f̃1 + f̃2

∥∥≤ ∥f1 +f2∥(1+O(1/k2)) =
√

2(1+O(1/k2)),

so that by (2.67) and the unitarity of x2, the vectors

f̃1, f̃2 ∈ Vm+1

( π

2k
+O(1/k3)

)
are linearly independent for k ∈ N big enough. This finishes the proof of claim
(2.62).

Now by definition (2.60), these subspaces are pairwise orthogonal for each
m ∈ N as soon as k ∈ N is big enough, and we have

(2.69) dim
⊕

0≤m<k+c−1

Vm

( π

2k
+mO(1/k3)

)
≥ 2(k+ c).

This contradicts the assumption dimH < 2(k + c), and proves that c ∈ Z and
dimH = k+ c. Thus we established the first statement of the theorem and (1.7).

Step 3. We are now left with constructing a ∗-representation satisfying (1.8).
Via the shift k 7→ k+ c, it suffices to consider the case c= 0. Given an eigenvector
em ∈H of x1 associated with λm ∈C as in formula (2.56) and applying Lemma 2.1
with A= x1, v = x2em and w =O(1/k3) as in formula (2.67), we can choose the
eigenvector em+1 ∈H of x1 associated with λm+1 ∈ C such that

(2.70) x2em = em+1 +O(1/k2).
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Starting from an arbitrary eigenvector e0 ∈Hm of x1 associated with λ0, we con-
struct in this way an eigenbasis {em}k−1

m=0 for uk, and using Lemma 2.1 again, we
get θ ∈ R such that

(2.71) x2ek−1 = eiθ e0 +O(1/k2).

Setting fm := e−iθm/kem for all m ∈ Z/kZ and working in the basis {fm}k−1
m=0

instead, set

X1 := diag
(
λ0,λ0e

2iπ/k, . . . ,λ0e
2iπm/k, . . . ,λ0e

2iπ(k−1)/k
)
,

X2fm := eiθ/kfm+1 for all m ∈ Z/kZ.
(2.72)

By construction, the endomorphism x1 ∈ End(H) is diagonal in the same basis
than X1 with eigenvalues given by formula (2.56), so that

(2.73) ∥X1 −x1∥op =O(1/k2).

Furthermore, Cauchy-Schwartz inequality together with formulas (2.70) and (2.71)
imply

(2.74) ∥X2 −x2∥op =O(1/k3/2).

Comparing with (2.53), we get (1.8), which completes the proof of the theorem.
□

3. Almost representations of compact Lie algebras. In this section, we
propose an alternative notion of irreducibility of almost representations in the con-
text of general compact Lie algebras, and present another version of the Ulam-type
statement: irreducible almost-representations can be approximated by a genuine
representation.

Let (g,{·, ·}) be a real compact n-dimensional Lie algebra. This means that
it is semi-simple and that its Killing form ⟨·, ·⟩ is negative definite. Consider an
orthonormal basis {ej}nj=1 of g such that for all 1 ≤ j, k ≤ n, we have

(3.1) ⟨ej ,ek⟩=−δjk.

Let H be a complex Hilbert space of finite dimension. Recall that ∥ · ∥op de-
notes the operator norm on the space su(H) of skew-Hermitian operators. For an
operator A : su(H)→ su(H) we write |||A||| for its operator norm with respect to
the operator norm on su(H).

Definition 3.1. A linear map t : g→ su(H) is called a (µ,K,ϵ)-almost repre-
sentation of (g,{·, ·}) if the following assumptions hold:

• For all 1 ≤ j, k ≤ n, the defect

(3.2) αjk := t({ej ,ek})− [t(ej), t(ek)]
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satisfies ϵ := maxj,k ∥αjk∥op ;
• K := maxj ∥t(ej)∥op ;
• The almost-Casimir operator Γ defined by (1.9) is invertible with µ :=

|||Γ−1|||.

THEOREM 3.2. Let (g,{·, ·}) be a real semi-simple compact finite dimen-
sional Lie algebra. Then for any c > 0, there exists a constant γ > 0 with the
following property. Given any (µ,K,ϵ)-almost representation t : g→ su(H) with
ϵ≤ γmin(µ−2K−2,µ−1,1), there exists a representation ρ : g→ su(H) such that
for all 1 ≤ j ≤ n,

(3.3) ∥t(ej)−ρ(ej)∥op ≤ cµKϵ.

Remark 3.3. Although more general, this result has a number of drawbacks as
compared to Theorem 1.2, in the case g = su(2). First, it is unclear to us how to
estimate µ in the case of geometric quantizations of the sphere. Second, even if
we have an ansatz µ∼ 1 and ∥xj∥ ∼ k ∼ dimH , as it should be for an irreducible
k-dimensional representation, the existence of a nearby genuine representation is
guaranteed only when the defect ϵ ≲ k−2, as opposed to a less restrictive assump-
tion ϵ≲ k−1 provided by Theorem 1.2.

Discussion on almost irreducibility. For representations, the invertibility of
the adjoint Casimir Γ is equivalent to irreducibility. In fact, note that the definition
of almost-Casimir given in (1.9) extends to any collection X = {x1, . . . ,xn} of
operators in su(H) by the formula

Γσ :=−
n∑
i=1

[[σ,xi],xi].

Furthermore,

(3.4) tr(Γ(σ)σ) =
n∑
i=1

tr([σ,xi]2),

and hence Γσ = 0 if and only if σ commutes with all the operators from X . In
particular, Γ is invertible if and only if the operators from X possess a common
proper invariant subspace. With this in mind, we are going to compare µ(X) :=
|||Γ−1||| with another quantity of geometric flavor which can be interpreted as a
magnitude of irreducibility. Put

d(X) := min
Π

max
j

∥(1−Π)xjΠ∥op,

where Π runs over all orthogonal projectors to proper subspaces V ⊂ H , and
j ∈ {1,2,3}. Intuitively speaking, smallness of d yields that the corresponding
subspace V is almost invariant.
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To this end, denote by X the space of all collections X whose almost-Casimir
is invertible. We say that two positive functions on X are equivalent if their ratio is
bounded away from 0 and +∞ by two constants which depend on dimH .

PROPOSITION 3.4. The functions µ−1/2 and d are equivalent.

Sketch of the proof. Denote by ∥A∥2 :=
√

tr(A∗A) the Hilbert-Schmidt norm
of an operator, and by λ1(X) the first eigenvalue of −Γ. The standard inequali-
ties between the Hilbert-Schmidt norm and the operator norm imply that µ−1 is
equivalent to λ1. The claim follows from the inequalities

(3.5) d(X)2 ≤ C1(k)λ1(X)

and

(3.6) λ1(X)≤ C2(k)d(X)2.

In order to prove inequality (3.5), take an eigenvector A of Γ with ∥A∥2 = 1 corre-
sponding to the first eigenvalue. Since trA= 0, the spectrum of A can be written as
the union of two clusters lying at distance at least ∼ k−2 apart. Let Π be the spectral
projection corresponding to one of them. Since by (3.4) A almost commutes with
xj up to ϵ, one readily deduces from Lemma 2.1 on quasimodes that the image of
Π is almost invariant under xj . This yields (3.5).

Inequality (3.6) follows from the identity

(3.7) −(Γ(Π),Π) = 2
n∑
i=1

∥∥[xi,Π]∥∥2
2,

which holds true for every orthogonal projector Π.
The details of the argument are left to the reader. □

It would be interesting to find sharp bounds on the ratio of µ−1/2 and d in terms
of dimH . At the moment, we cannot compute them even for genuine irreducible
representations.

Proof of Theorem 3.2. To simplify the notations, we will often write xj :=
t(ej) for all 1≤ j ≤n. All the estimates in the proof are with respect to the operator
norm of su(H) and only depend on (g,{·, ·}).

For a linear map a : g → su(H), define an approximate Eilenberg-Chevalley
coboundary dta : g⊗g→ su(H) by

dta(g,h) := [t(g),a(h)]− [t(h),a(g)]−a({g,h}).

The proof follows the Newton-type iterative process due to Kazhdan [21]
adapted to the context of Lie algebras. At the first step we try to find a linear map
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a : g→ su(H) so that

(3.8) t(g) := t(g)+a(g)

is a genuine representation. This yields equation

(3.9) α(g,h)−dta(g,h)− [a(g),a(h)] = 0.

Ignore the third, quadratic in a term, and solve the linearized equation dta= α. As
we will see, the almost representation t := t+a is closer to a genuine representa-
tion. Repeating the process, we get in the limit the desired genuine representation
approximating the original almost representation t.

To make this precise, we have to solve the linearized homological equation
dta = α. This is done by using an effective approximate version of Whitehead’s
Lemma (see [18, pp. 88–89]).

Consider the anti-symmetric 2-form α : g×g→ su(H) defined for any g,h∈ g

by

(3.10) α(g,h) := t({g,h})− [t(g), t(h)]

and the 1-form a : g→ su(H) defined for any g ∈ g by

(3.11) a(g) :=−
n∑
i=1

Γ−1[α(g,ei),xi].

LEMMA 3.5. For all j,k = 1, . . . ,n

(3.12) α(ej ,ek) = dta(ej ,ek)+O(µ2K2ϵ2).

The lemma is proved at the end of this section.
Let us now consider the linear map t : g→ su(H) defined for all g ∈ g by

(3.13) t(g) := t(g)+a(g),

and set xj := t(ej) for all 1 ≤ j ≤ n. Then for all 1 ≤ j ≤ n, by formula (3.11) for
a(ej) we have

(3.14) xj ≤K(1+O(µϵ)).

On the other hand, considering for all 1 ≤ j, k ≤ n the defect

(3.15) αjk := t({ej ,ek})− [t(ej), t(ek)],

we see from (3.9) that

(3.16) αjk = αjk−dta(ej ,ek)− [a(ej),a(ek)] =O(µ2K2ϵ2).
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Finally, consider the almost-Casimir operator Γ : su(H) → su(H) defined as
in (1.9) with xk replaced by t(ek) for all 1 ≤ k ≤ n. Then we get

Γ = Γ+ ϵ(1+µϵ)O(µK2) = Γ
(
1+ ϵ(1+µϵ)O(µ2K2)

)
.

This implies that for any δ > 0, there exists a constant γ > 0 such that if ϵ(1+µϵ)≤
γ/µ2K2, then Γ is invertible and for all σ ∈ su(H), its inverse satisfies

∥∥Γ−1
(σ)
∥∥

op ≤ (1+ δ)µ∥σ∥op.

This, together with the estimates (3.14) and (3.16), shows that for any δ > 0, there
exists γ > 0 such that under the hypothesis ϵ ≤ γmin(µ−2K−2,µ−1,1), the linear
map t : g→ su(H) is an (µ,K,ϵ)-almost representation with

µ≤ µ(1+ δ), K ≤K(1+ δ) and ϵ≤ ϵδ.

Taking δ > 0 such that δ < (1 + δ)−4, we get that ϵ ≤ γmin(µ−2K
−2
,µ−1,1),

and we can reiterate the construction above with the (µ,K,ϵ)-almost represen-
tation t : g→ su(H) instead of t : g → su(H). At the N -th iteration, we get a
(µN ,KN , ϵN )-almost representation tN : g→ su(H) with

µN ≤ µ(1+ δ)N , KN ≤K(1+ δ)N and ϵN ≤ ϵδN .

Writing aN : g→ su(H) for the 1-form defined as in (3.11) for tN : g→ su(H),
for all 1 ≤ j ≤ n we get

tN (ej) = tN−1(ej)+aN (ej) = t(ej)+

N∑
k=1

ak(ej)

= t(ej)+
N∑
k=1

(
(1+ δ)2δ

)k
O(µKϵ),

(3.17)

and the sum of the last line converges as N → +∞ for δ > 0 small enough. As
ϵN → 0, the limit map ρ : g → su(H) is a genuine representation, satisfying the
inequality (3.3) by (3.17). □

Proof of Lemma 3.5. First note that by definition, for any 1 ≤ i, j,k ≤ n, we
have

0 = [αjk,xi]+α({ej ,ek},ei)+ [αki,xj ]

+α({ek,ei},ej)+ [αij ,xk]+α({ei,ej},ek).
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Taking the bracket of this identity with xi and following the computations of [18,
p. 90], this implies that for all 1 ≤ j, k ≤ n, we have

(3.18) Γαjk =
n∑
i=1

(
[α({ej ,ek},ei),xi]+ [[αki,xi],xj ]− [[αji,xi],xk]

)
−Ajk,

with

Ajk :=−
n∑
i=1

(
[αki, [xj ,xi]]− [α(ek,{ei,ej}),xi]

− [αji, [xk,xi]]+ [α(ej ,{ei,ek}),xi]
)
.

(3.19)

Applying Γ−1 : su(H)→ su(H) on both sides of the equality (3.18) and recalling
the definition (3.11) of a : g→ su(H), we get

(3.20) αjk = [xj ,a(ek)]− [xk,a(ej)]−a({ei,ej})−Bjk−Γ−1Ajk,

with

Bjk :=−
n∑
i=1

(
Γ−1[[αki,xi],xj ]− [Γ−1[αki,xi],xj ]

−Γ−1[[αji,xi],xk]+ [Γ−1[αji,xi],xk]
)
.

(3.21)

Let us now estimate the terms (3.19) and (3.21). First note that as the Killing form
⟨·, ·⟩ is Ad-invariant and by the explicit formula (3.1), we have

−
n∑
i=1

[α(ek,{ei,ej}),xi] =
n∑
i=1

(
n∑
l=1

⟨{ei,ej},el⟩[αkl,xi]

)

=
n∑
l=1

[
αkl,

n∑
i=1

⟨{ej ,el},ei⟩xi

]

=−
n∑
l=1

[αkl, t({ej ,el})]

=−
n∑
l=1

[αkl, [xj ,xl]]+
n∑
l=1

[αkl,αjl]

=−
n∑
l=1

[αkl, [xj ,xl]]+O(ϵ2).

(3.22)

Comparing with formula (3.19) for Ajk, this implies that

(3.23) Γ−1Ajk =O(µϵ2).



1612 L. IOOS, D. KAZHDAN, AND L. POLTEROVICH

On the other hand, following [18, p. 78] for any g ∈ g and 1 ≤ j ≤ n, using the
Killing form in the same way than in (3.22) we get

Γ[g,xj ] =−
n∑
i=1

[[[g,xj ],xi],xi]

= [Γg,xj ]−
n∑
i=1

[[g, [xj ,xi]],xi]−
n∑
i=1

[[g,xi], [xj ,xi]]

= [Γg,xj ]−Cj(g)−
n∑
i=1

[[g, t({ej ,ei})],xi]−
n∑
i=1

[[g,xi], t({ej ,ei})]

= [Γg,xj ]−Cj(g),

with

Cj(g) :=−
n∑
i=1

[[g,αji],xi]−
n∑
i=1

[[g,xi],αji].

In particular, for any 1 ≤ i, j,k, l ≤ n, we have

Γ−1[[αij ,xk],xl]− [Γ−1[αij ,xk],xl] = Γ−1([[αij ,xk],xl]−Γ[Γ−1[αij ,xk],xl]
)

= Γ−1Cl(Γ
−1[αij ,xk]) =O(µ2K2ϵ2).

Comparing with formula (3.21) for Bjk, we thus get

(3.24) Bjk =O(µ2K2ϵ2).

Then via the estimates (3.23) and (3.24), the identity (3.20) becomes

αjk = [xj ,a(ek)]− [xk,a(ej)]−a({ek,ej})+O(µ2K2ϵ2).

This completes the proof of the lemma. □

4. Equivalence of quantizations. The basic strategy of the proofs of The-
orem 1.8 is to show that geometric quantizations of the sphere or the torus induce
almost representations of su(2) and the quantum torus respectively, when restricted
to a specific set of basic functions, and then use our Theorems 1.2 and 1.5. Let us
first start with some generalities on geometric quantizations of a closed symplectic
manifold (M,ω).

4.1. General setting. Let (M,ω) be a closed symplectic manifold. A bi-
differential operator C : C∞(M)×C∞(M)→ C∞(M) is called a Hochschild co-
cycle if for all f1,f2,f3 ∈ C∞(M), we have

∂HC(f1,f2,f3) := f1C(f2,f3)−C(f1f2,f3)+C(f1,f2f3)−C(f1,f2)f3

= 0.
(4.1)
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The operator ∂H is called the Hochschild differential. We will write

C−(f,g) :=
C(f,g)−C(g,f)

2
and C+(f,g) :=

C(f,g)+C(g,f)

2
.

for the anti-symmetric and symmetric part of C.
Assume now that {Tk : C∞(M) → L(Hk)}k∈N, satisfy the axioms of Def-

inition 1.6. The associativity of composition of operators implies that the bi-
differential C1 appearing in axiom (P3) is a Hochschild cocycle, and that for any
f1,f2,f3 ∈ C∞(M), we have

(4.2) ∂HC2(f1,f2,f3) = C1(C1(f1,f2),f3)−C1(f1,C1(f2,f3)).

Furthermore, the axiom (P2) is equivalent to the fact that

(4.3) C−
1 (f,g) =

i

2
{f,g},

for all f,g ∈ C∞(M). Then formula (4.1) for C−
1 is a consequence of the Leibniz

rule for the Poisson bracket, and this shows that C+
1 is a symmetric Hochschild

cocycle. Then by [15, Th. 2.15], it is a Hochschild coboundary, meaning that there
exists a differential operator D : C∞(M) → C∞(M) vanishing on constants such
that for f,g ∈ C∞(M), we have

(4.4) C+
1 (f,g) =D(f)g+fD(g)−D(fg).

Furthermore, the axiom (P1) implies that the operator Tk(f) ∈ End(Hk) is Her-
mitian for all k ∈ N big enough if and only if f ∈ C∞(M,C) is real valued. As the
square of a Hermitian operator is Hermitian, the axiom (P3) then shows that C+

1 is
a real-valued bi-differential operator, so that D has real coefficients.

Let us now assume that C+
1 ≡ 0, and consider the bi-differential operators Ĉ1

and Ĉ2 defined by interchanging f,g ∈C∞(M) in axiom (P3) in the following way,
as k →+∞,

(4.5) Tk(g)Tk(g) =: Tk

(
fg+

1
k
Ĉ1(f,g)+

1
k2 Ĉ2(f,g)

)
+O(1/k3).

Then we have Ĉ1(f,g) = C1(g,f) = −C1(f,g) and Ĉ2(f,g) = C2(g,f). On the
other hand, associativity of composition of operators implies that (4.2) holds for Ĉ1

and Ĉ2, one readily checks that ∂HC2 = ∂HĈ2. Therefore, C−
2 = (C2 − Ĉ2)/2 is

an anti-symmetric Hochschild cocycle, and by [15, Th. 2.15], there exists a 2-form
α ∈ Ω2(M,C) so that for all f,g ∈ C∞(M), we have

(4.6) C−
2 (f,g) =

i

2
α(sgradf,sgradg).
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Furthermore, by axiom (P1) as above and the fact that the commutator of Her-
mitian operators is skew-Hermitian, the axiom (P3) implies that the bi-differential
operator iC−

2 is real valued, so that α is a real 2-form.
The proofs of Theorem 1.8 and 4.4 are based on a natural operation on quanti-

zations, which we call a change of variable. Specifically, given a geometric quan-
tization {Tk : C∞(M) → L(Hk)}k∈N, and a differential operator D : C∞(M) →
C∞(M), set

(4.7) TD
k (f) := Tk

(
f +

1
k
Df

)
,

for all f ∈ C∞(M) and all k ∈ N. Then one readily checks that the maps

{TD
k : C∞(M)→L(Hk)}k∈N,

satisfy the axioms of Definition 1.6, and that for any f ∈ C∞(M), we have the
estimate

(4.8)
∥∥Tk(f)−TD

k (f)
∥∥

op =O(1/k),

as k→+∞. We will write C1,D and C2,D for the associated bi-differential operators
of axiom (P3).

We will use the operation of change of variables to reduce the proof of Theorem
1.8 to a class of remarkable quantizations, described by the following result.

LEMMA 4.1. Assume that (M,ω) satisfies dimM = 2. Then for any geomet-
ric quantization {Tk : C∞(M) → L(Hk)}k∈N, there exists a differential operator
D : C∞(M) → C∞(M) vanishing on constants such that the bi-differential oper-
ators of axiom (P3) associated with the induced quantization {TD

k : C∞(M) →
L(Hk)}k∈N, satisfy

(4.9) C+
1,D(f,g) = 0 and C−

2,D(f,g) =− i

2
c{f,g},

for all f,g ∈ C∞(M), where c ∈ R is constant.

Proof. One readily computes that a change of variable (4.7) associated to a
differential operator D : C∞(M) → C∞(M) acts on the bi-differential operators
C+

1 and C−
2 via the following formula, for all f,g ∈ C∞(M),

C+
1,D(f,g) = C+

1 (f,g)+D(f)g+fD(g)−D(fg),

C−
2,D(f,g) = C−

2 (f,g)+
i

2
(
{D(f),g}+{f,D(g)}−D({f,g})

)
.

(4.10)

In particular, formula (4.4) shows that there is an operator D satisfying C+
1,D ≡ 0,

determined up to the addition of a derivation δ : C∞(M)→ C∞(M).
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Let now D :C∞(M)→C∞(M) be such that C+
1,D ≡ 0, and let αD ∈Ω2(M,R)

be the two form of formula (4.6) associated with C−
2,D. Recall that we assume

dimM = 2, so that H2(M,R) is 1-dimensional, generated by the cohomology
class [ω]. Then if we set

(4.11) c :=
1

2π

∫
M
αD,

we know that there exists a 1-form θ ∈ Ω1(M,R) such that

(4.12) αD = cω+dθ.

On the other hand, for all f,g ∈ C∞(M), we have by definition

dθ(sgradf,sgradg)

= θ(sgrad{f,g})−{θ(sgradf),g}−{f,θ(sgradg)}.
(4.13)

Then if we consider the derivation δ : C∞(M) → C∞(M) defined for all f ∈
C∞(M) by δf := θ(sgradf), formulas (4.10) and (4.12) imply

(4.14) C−
2,D+δ(f,g) =

i

2
cω(sgradf,sgradg) =− i

2
c{f,g},

and C+
1,D+δ = C+

1,D ≡ 0. This shows the result. □

Let us end this Section with an existence Theorem, which was already alluded
to in Example 1.7.

THEOREM 4.2 ([5]). Let (M,ω) be a closed symplectic manifold with [ω] ∈
2πH2(M,Z) admitting a complex structure compatible with ω. Then there ex-
ists a geometric quantization {Tk : C∞(M) → L(Hk)}k∈N, such that for all f ∈
C∞(T2,C), its C-linear extension satisfies

(4.15) ∥Tk(f)∥op ≤ ∥f∥∞.

4.2. Proof of Theorem 1.8. Using the estimate (4.8) and Lemma 4.1, we
see that it suffices to establish Theorem 1.8 for geometric quantizations for which
there is a constant c ∈ R such that C+

1 ≡ 0 and C−
2 = − i

2c{·, ·}. All geometric
quantizations considered in this Section will thus satisfy this property.

The proof of Theorem 1.8 for the two cases M = S2 and M = T2 follows
the same strategy: we first establish (1.13) for a finite set of functions generating a
dense subalgebra of C∞(M), and then use the quasi-multiplicativity axiom (P3) in
a careful way to extend it to the whole C∞(M) by density.
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Case of M = S2. We will use the Cartesian coordinate functions u1,u2,u3 ∈
C∞(S2) of S2 seen as the unit sphere in R2. The induced volume form ω is the
standard volume form of volume 2π, and these coordinate functions satisfy the
commutation relation

(4.16) {uj ,uj+1}=−2uj+2,

for all j ∈ Z/3Z. Then given a quantization {Tk : C∞(S2) → L(Hk)}k∈N with
C+

1 ≡ 0 and C−
2 =− i

2c{·, ·}, one readily checks from Definition 1.6 and the com-
mutation relations (4.16) that the assumptions of Theorem 1.2 are satisfied for the
constant c ∈ R and the operators x1,x2,x3 ∈ su(Hk) defined for all k ∈ N and
j ∈ Z/3Z by

(4.17) xj :=
ik

2
k

k− c
Tk(uj),

where u1,u2,u3 ∈ C∞(S2) are the Cartesian coordinates of S2 ⊂ R3. As the as-
sumption limsupk→+∞ dimHk/k < 2 implies in particular that dimHk < 2(k+ c)

for all k ∈N, it follows that c∈Z and that dimHk = k+c for all k ∈N big enough,
which proves the first statement (1.12).

Furthermore, Theorem 1.2 implies that there exist operators X1,X2,X3 ∈
su(Hk) generating an irreducible representation of su(2) such that for all 1≤ j≤ 3,

(4.18)
∥∥∥∥ ik2 k

k− c
Tk(uj)−Xj

∥∥∥∥
op
=O(1).

Now if {Sk :C∞(S2)→L(Hk)}k∈N is another quantization with same sequence of
Hilbert spaces, we get in the same way operators X̃1, X̃2, X̃3 ∈ su(Hk) generating
an irreducible representation of su(2) such that for all 1 ≤ j ≤ 3,

(4.19)
∥∥∥∥ ik2 k

k− c
Sk(uj)− X̃j

∥∥∥∥
op
=O(1).

As any two irreducible representations of su(2) with same dimension are isomor-
phic, formulas (4.18) and (4.19) show that there exist unitary operators Uk : Hk →
Hk for all k ∈ N such that for all j ∈ Z/3Z,

(4.20) ∥Tk(uj)−U−1
k Sk(uj)Uk∥op =O(1/k).

Set Qk := U−1
k SkUk for all k ∈N, and note that by transitivity, it suffices to estab-

lish (1.13) when {Tk : C∞(S2)→L(Hk)}k∈N is the Berezin-Toeplitz quantization
of Theorem 4.2.

Consider the decomposition of L2(S2,C) into the direct sum of eigenspaces
Hn of the Laplace-Beltrami operator ∆ with eigenvalue 2n(n+1), for each n∈N.
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Using for instance [4, Cor. 1.1], we know that for any N ∈ N, there exists CN > 0
such that for any n ∈ N∗ and f ∈Hn, we have

(4.21) ∥f∥CN ≤ CNn2N∥f∥L2 .

Recall on the other hand that for any n ∈ N, the eigenspace Hn is isomorphic
to the irreducible SO(3)-representations of highest weight n ∈ N with respect to
S1 ⊂ SO(3) rotating along the u3-axis, and write fn ∈ Hn for the unit highest
weight vectors. Via the identification with spherical harmonics and following e.g.
[1, Ex. 15.4.1, §15.5], we have the following recursion formula in n ∈ N,

fn+1 =

√
2n+3
2n+2

f1fn,

f1 =−(u1 + iu2).

(4.22)

Let us prove by induction that there exists constants α > 0 and M ∈ N such that
for any n ∈ N and all k ∈ N, we have

(4.23) ∥Tk(fn)−Qk(fn)∥op ≤ α
nM

k
,

The case n= 1 readily follows from (4.20) and formula (4.22) for f1. On the other
hand, axioms (P1), (P3) and the estimate (4.21) give constants α0 > 0 and N ∈ N
such that for any n ∈ N and k ∈ N, we have

∥Qk(f1fn)−Qk(f1)Qk(fn)∥op ≤
α0

k
∥f1∥CNn2N ,

∥Qk(fn)∥op ≤ α0n
2N ,

(4.24)

and the same holds for {Tk : C∞(S2) → L(Hk)}k∈N. Let now n ∈ N be such
that (4.23) and holds, and recall by assumption that ∥Tk(f)∥op ≤ ∥f∥∞ for all
f ∈C∞(S2,C) and k ∈N. Then using the sub-multiplicativity of the operator norm,
we get that for any f ∈ C∞(S2),

∥Tk(f1fn)−Qk(f1fn)∥op

≤ ∥Tk(f1)Tk(fn)−Qk(f1)Qk(fn)∥op +2
α0

k
∥f1∥CNn2N

≤ ∥Tk(f1)(Tk(fn)−Qk(fn))∥op

+∥(Tk(f1)−Qk(f1))Qk(fn)∥op +2
α0

k
∥f1∥CNn2N

≤ α

k
∥f1∥∞n

M +
Cα0

k
n2N +2

α0

k
∥f1∥CNn2N ,

(4.25)

where C > 0 comes from the estimate (4.20) and formula (4.22) for f1. As ∥f1∥∞ =

maxx∈S2 |u1 + iu2| = 1, we can choose α = α0(C+ 2∥f1∥CN ) and M = 2N + 1
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in (4.23) to get

α

k

√
2n+3
2n+2

(nM +n2N )≤ α

k
(n+1)(nM−1 +n2N−1)

≤ α

k
(n+1)M ,

(4.26)

where we used the fact that n
√

2n+3
2n+2 ≤ n+ 1 for all n ∈ N. Using (4.22), this

implies (4.23) with n replaced by n+1, and thus for all n ∈ N by induction.
Let us now establish the estimate (4.23) for all functions in Hn, for each

n ∈ N. First, by definition of the action of SO(3) on the unit sphere S2, we see
that (4.20) implies the existence of a constant C > 0 such that for any g ∈ SO(3),
any j ∈ Z/3Z and all k ∈ N, we have

(4.27) ∥Tk(g
∗uj)−Qk(g

∗uj)∥op ≤ C/k.

Note on the other hand that for any g ∈ SO(3), the functions g∗fn ∈C∞(S2), n∈N,
are again highest weight vectors with respect to S1 ⊂ SO(3) rotating along the
g∗u3-axis. We can then repeat the reasoning above replacing fn by g∗fn for all
n ∈ N to get

(4.28) ∥Tk(g
∗fn)−Qk(g

∗fn)∥op ≤ α
nM

k
,

for any g ∈ SO(3), with same constants α> 0 and M ∈N. Recall on the other hand
that the standard volume form ω on S2 is the pushforward of the Haar measure
on SO(3). Then following e.g., [7, III.3.3.a], for any f ∈ Hn we can consider its
coherent state decomposition

(4.29) f =
n+1

2π

∫
S2
⟨f,g∗fn⟩L2 g∗fn ω[g],

where g ∈ SO(3) is any representative of [g] ∈ S2 ≃ SO(3)/S1. Then using (4.28)
and Cauchy-Schwartz inequality, we get

∥Tk(f)−Qk(f)∥op

≤ n+1
2π

∫
S2
|⟨f,g∗fn⟩L2 |∥Tk(g

∗fn)−Qk(g
∗fn)∥op ω[g]

≤ α∥f∥L2
(n+1)nM

k
.

(4.30)

Take now any f ∈ C∞(S2), and consider its spectral decomposition into the
eigenspaces of ∆, so that f =

∑
n∈Nanφn, with φn ∈ Hn and ∥φn∥L2 = 1 for

all n ∈ N. Since f is smooth, the sequence (an)n∈N decays faster than any power
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of n, so that using (4.30), there exists C ′ > 0 such that

(4.31) ∥Tk(f)−Qk(f)∥op ≤ α
∑
n∈N

(n+1)nM

k
an ≤ C ′

k
.

This shows formula (1.13) in the case of M = S2.

Case of M = T2. Write (q1, q2) ∈ T2 = R2/Z2 for the standard coordinates,
so that the standard volume form of volume 2π writes ω = 2πdq1 ∧ dq2. We will
use the functions u1,u2 ∈ C∞(T2,C) defined for any q := (q1, q2) ∈ T2 ≃ R2/Z2

and j = 1,2 by

(4.32) uj(q) := e2πiqj ,

which satisfy the commutation relation

(4.33) {u1,u2}= 2πu1u2.

Following for instance in [3, §2], we consider the Moyal-Weyl star product over
(C∞(T2),{·, ·}), defined as in (1.10) with coefficients C̃1 and C̃2 satisfying C̃+

1 =

C̃−
2 = 0 and for all f,g ∈ C∞(T2),

(4.34) C̃+
2 (f,g) =− 1

32π2

(
∂2

∂q2
1
f
∂2

∂q2
2
g−2

∂2

∂q1∂q2
f

∂2

∂q1∂q2
g+

∂2

∂q2
2
f
∂2

∂q2
1
g

)
.

Then given a geometric quantization {Tk :C∞(T2)→L(Hk)}k∈N with C+
1 ≡ 0 and

C−
2 =− i

2c{·, ·}, we get that C1 = C̃1 via formula (4.3), and using (4.2), we get that
C2 − C̃2 is a Hochschild cocycle (4.1). On the other hand, we have C−

2 − C̃−
2 =

− i
2c{·, ·}, which also satisfies (4.1), and we thus get C+

2 − C̃+
2 is a symmetric

Hochschild cocycle, hence a coboundary by [15, Th. 2.15]. As in formula (3.11),
this means that there exists a differential operator D2 : C∞(T2)→ C∞(T2) vanish-
ing on constants such that

(4.35) C̃+
2 (f,g) = C+

2 (f,g)+D2(f)g+fD2(g)−D2(fg).

Consider the following change of variables at second order in 1/k, for all f ∈
C∞(T2),

(4.36) TD2
k (f) := Tk

(
f +

1
k2D2(f)

)
.

This again defines a geometric quantization in the sense of Definition 1.6, with
associated bi-differential operators C1,D2 and C2,D2 of axiom (P3) satisfying
C+

1,D2
≡ 0 and C−

2,D2
= − i

2c{·, ·}, while formula (4.35) implies C+
2,D2

= C̃+
2 .
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Note also that TD2
k (uj)

∗ = TD2
k (u−1

j ) for each j = 1,2 by Definition 1.6 and
formula (4.32). Then using formula (4.34), we get as k →+∞,

TD2
k (uj)T

D2
k (uj)

∗ = 1+
i

2

(
1
k
− c

k2

)
TD2
k ({uj ,u−1

j })+O(1/k3)

= 1+O(1/k3),

(4.37)

and

TD2
k (u1)T

D2
k (u2) = TD2

k (u1u2)+
i

2

(
1
k
− c

k2

)
TD2
k ({u1,u2})

− 1
32π2k2T

D2
k

(
∂2

∂q2
1
u1

∂2

∂q2
2
u2

)
+O(1/k3)

= TD2
k (u1u2)+

i

2
2π
k+ c

TD2
k (u1u2)

− (2π)2

8k2 TD2
k (u1u2)+O(1/k3)

= e2πi/2(k+c)TD2
k (u1u2)+O(1/k3),

(4.38)

while in the same way,

(4.39) TD2
k (u2)T

D2
k (u1) = e−2πi/2(k+c)TD2

k (u1u2)+O(1/k3).

We then see that the operators xj := TD2
k (uj) for all j = 1,2 and k ∈N, satisfy the

assumptions of Theorem 1.5 for the constant c ∈ R as above. As the assumption
limsupk→+∞ dimHk/k < 2 implies in particular that dimHk < 2(k+ c) for all
k ∈N, it follows that c∈Z and that dimHk = k+c for all k ∈N big enough, which
proves (1.12). Furthermore, Theorem 1.5 and formula (4.36) imply that there exist
unitary operators X1,X2 ∈ End(Hk) satisfying X1X2 = e2πi/(k+c)X2X1 and not
preserving any non-trivial proper subspace, such that

(4.40) ∥Tk(uj)−Xj∥op =O(1/k) for all j = 1,2.

Note that the explicit formula (2.53) shows that for any two such pairs
X1,X2 ∈ End(Hk) and X̃1, X̃2 ∈ End(Hk), there exists a unitary operator
U : Hk →Hk and p := (p1,p2) ∈ T2 ≃R2/Z2 such that for each j = 1,2, we have

(4.41) X̃j = e2πipjU−1XjU.

Setting mj := ⌊(k+ c)pj⌋ ∈ N for each j = 1,2, and considering the unitary oper-
ator Um1,m2 :=X−m2

1 Xm1
2 ∈ End(Hk), we get the following estimates in operator

norm as k → +∞, for all p = (p1,p2) ∈ T2 and all unitary operators X1,X2 ∈
End(Hk) satisfying the above commutation relations,

(4.42) Um1,m2XjU
−1
m1,m2

= e−2πimj/(k+c)Xj = e−2πipjXj +O(1/k).
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Thus for any two such pairs of sequences X1,X2 ∈ End(Hk), k ∈N, and X̃1, X̃2 ∈
End(Hk), k ∈ N, we get a sequence of unitary operators Uk : Hk → Hk, k ∈ N,
such that

(4.43) X̃j = U−1
k XjUk+O(1/k).

Then if we have two quantizations {Tk,Qk : C∞(T2) → L(Hk)}k∈N with same
sequence of Hilbert spaces satisfying dimHk = k+c for all k ∈N big enough, they
both satisfy (1.8) for two different pairs X1,X2 ∈End(Hk) and X̃1, X̃2 ∈End(Hk),
and formula (4.43) shows that there exists unitary operators Uk : Hk →Hk for all
k ∈ N such that for each j = 1,2,

(4.44) ∥U−1
k Qk(uj)Uk−Tk(uj)∥op =O(1/k).

Now by transitivity as above, it suffices to establish (1.13) when

{Tk : C∞(T2)→L(Hk)}k∈N,

is the Berezin-Toeplitz quantization of Theorem 4.2. Then by a straightforward
adaptation of the computation (4.25) with f1 replaced by u1, u2 respectively and
fn replaced by un1u

m
2 , we get by induction on n,m ∈ Z that there exist constants

α > 0 and M ∈ N, depending only on the quantizations, such that

(4.45) ∥Tk(u
n
1u

m
2 )−Qk(u

n
1u

m
2 )∥op ≤ α

(|n|+ |m|)M

k
.

Now for any f ∈ C∞(T2), consider its Fourier expansion

(4.46) f =
∑

m,n∈Z
am,nu

n
1u

m
2 .

Since f is smooth, the coefficients an,m, n,m ∈ Z, decay faster than any polyno-
mial in |n|, |m|. Using the estimate (4.45) in the same way as with (4.31), this
shows formula (1.13) in the case of M = T2, and concludes the proof of Theo-
rem 1.8.

4.3. Traces of quantizations. Note that in the previous section, we showed
in particular that for geometric quantizations of M = S2 or T2, the constant c ∈
R appearing in Lemma 4.1 is an integer, uniquely determined by the condition
dimHk = k+ c for all k ∈ N big enough. This fact can be refined for geometric
quantizations satisfying the following additional axiom.

Definition 4.3. A geometric quantization {Tk : C∞(M) → L(Hk)}k∈N of a
closed symplectic manifold (M,ω) of dimension dimM = 2d is said to satisfy the
trace axiom if there exists a function R ∈ C∞(S2) such that for all f ∈ C∞(S2),
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we have

(4.47) tr Tk(f) =

(
k

2π

)d∫
M
fRk

ωd

d!
,

for a sequence of functions Rk ∈ C∞(M) satisfying the following estimate as
k →+∞,

Rk = 1+
1
k
R+O(1/k2).

We then have the following refinement of Lemma 4.1, relating this trace with
the coefficient C−

2 .

THEOREM 4.4. Let M = S2 or T2 be endowed with the standard volume form
ω of volume 2π. Then if {Tk : C∞(M)→L(Hk)}k∈N is a geometric quantization
with C+

1 ≡ 0 satisfying the trace axiom of Definition 4.3, we have for all f,g ∈
C∞(M),

(4.48) C−
2 (f,g) =− i

2
R{f,g}.

Proof. Let Tk : C∞(M) → L(Hk), k ∈ N, be a geometric quantization with
C+

1 ≡ 0 satisfying the trace axiom of Definition (4.3), and recall the form α ∈
Ω2(M,R) of formula (4.6). Let c ∈R and θ ∈Ω1(M,R) be such that α= cω+dθ,
as in formula (4.12), and write

(4.49) dθ =: Rθω,

with Rθ ∈C∞(M). Considering the change of variable (4.7) induced by the deriva-
tion δ : C∞(M)→ C∞(M) defined by δf := θ(sgradf), we compute

(4.50)
∫
M
δfω =−

∫
M
f dθ =−

∫
M
Rθfω.

Then one readily computes that the quantization {T δ
k : C∞(M)→L(Hk)}k∈N in-

duced by δ as in (4.7) also satisfies the trace axiom of Definition 4.3, where the
function R ∈ C∞(M) is replaced by the function Rδ := R−Rθ. On the other
hand, we know from the proof of Lemma 4.1 that C+

1,δ = C+
1 ≡ 0 and C−

2,δ =

− i
2c{·, ·}, and from the proof of Theorem 1.8 above that c ∈ R is an integer satis-

fying dimHk = k+ c for all k ∈ N big enough. Applying formula (4.47) to f = 1
and using that T δ

k (1) = 1, we get

(4.51)
1

2π

∫
M
Rδω = c.
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On the other hand, using the axioms (P2) and (P3), we get for any f,g ∈ C∞(M)

that as k →+∞,

i
(

1− c

k

)
trT δ

k ({f,g}) = k tr
(
[T δ

k (f),T
δ
k (g)]+O(1/k3)

)
=O(1/k).

(4.52)

Now as every function with zero mean can be written as a sum of Poisson brackets
(see e.g. [2, Theorem 1.4.3]), we get that

(4.53)
∫
M
fω = 0 implies trT δ

k (f) =O(1/k) as k →+∞.

Using formula (4.47) again, we see that this is possible if and only Rδ is constant,
equal to c∈Z by formula (4.51). We thus have R= c+Rθ, and by formulas (4.13)
and (4.49), we get

(4.54) C−
2 (f,g) =− i

2
c{f,g}− i

2
Rθ{f,g}=− i

2
R{f,g}.

This gives the result. □

Together with Theorem 1.5, Theorem 4.4 implies the following extension of
Theorem 1.8 in a special case. Denote by τp :T2 →T2 the translation by an element
p ∈ T2.

THEOREM 4.5. Let {Qk,Tk : C∞(T2)→L(Hk)}k∈N be two geometric quan-
tizations of the torus satisfying the trace axiom of Definition 4.3, with the same
sequence of Hilbert spaces, same C+

1 , and same R ∈C∞(T2). Assume furthermore
that the function R is constant, and that the bi-differential operator C+

1 is transla-
tion invariant. Then there exist a sequence {Uk : Hk →Hk}k∈N of unitary opera-
tors and a sequence {pk ∈ T2}k∈N of points in T2 such that for any f ∈ C∞(T2),
we have as k →+∞,

(4.55) ∥U−1
k Qk(τ

∗
pk
f)Uk−Tk(f)∥op =O(1/k3/2).

Proof. First note that as C+
1 is translation invariant, the differential operator

D : C∞(T2)→ C∞(T2) appearing in formula (4.4) can be chosen to be translation
invariant as well. Consider the common change of variable defined for all f ∈
C∞(T2) and k ∈ N by

(4.56) QD
k (f) :=Qk

(
f +

1
k
D(f)

)
and TD

k (f) := Tk

(
f +

1
k
D(f)

)
,

so that C+
1,D ≡ 0. Since both D and ω are translation invariant, and D vanishes on

constants, we have

(4.57)
∫
T2
D(f)ω = 0,
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for all f ∈ C∞(T2). We then see that the quantizations (4.56) also satisfy the trace
axiom of Definition 4.3 with function R ∈ C∞(T2) unchanged, and by Theorem
4.4, they have same C−

2,D, given for all f,g ∈ C∞(T2) by the formula

(4.58) C−
2,D(f,g) =− i

2
R{f,g}.

Furthermore, the trace axiom of Definition 4.3 implies in particular that

limsup
k→+∞

dimHk/k < 2.

As R is constant by assumption, we can then follow the proof of Theorem 1.8 in
Section 4.2 in the torus case T2, replacing the quantizations {Qk,Tk : C∞(T2)→
L(Hk)}k∈N by the quantizations {QD

k ,T
D
k : C∞(T2) → L(Hk)}k∈N constructed

above. Using the full strength of Theorem 1.5, we get unitary operators X1,X2 ∈
End(Hk) satisfying X1X2 = e2πi/(k+c)X2X1 such that the following analogue of
formula (4.40) holds,

(4.59) ∥TD
k (uj)−Xj∥op =O(1/k3/2) for all j = 1,2.

Furthermore, the same holds for QD
k with operators X̃1, X̃2 ∈ End(Hk) such that

(4.60) X̃j = e2πipjU−1XjU for all j = 1,2,

for a unitary operator U : Hk →Hk and p := (p1,p2) ∈ T2 ≃ R2/Z2. On the other
hand, note that by definition (4.32) of uj ∈ C∞(T2,C) for all j = 1,2, if τp : T2 →
T2 is the translation operator by p ∈ T2, then we have

(4.61) τ ∗puj = e2πipjuj .

Using now the commutation relation (4.33) and the fact that C+
1,D ≡ 0, we get from

axiom (P3) a constant α > 0 and a constant N ∈ N such that for any m,n ∈ Z, we
have ∥∥∥∥TD

k (u1)T
D
k (un1u

m
2 )−

(
1+

2πin
k

)
TD
k (un+1

1 um2 )

∥∥∥∥
op
≤ α

k2 (|n|+|m|)N ,∥∥∥∥TD
k (u2)T

D
k (un1u

m
2 )−

(
1+

2πim
k

)
TD
k (un1u

m+1
2 )

∥∥∥∥
op
≤ α

k2 (|n|+|m|)N .

(4.62)

Using this estimate and through a straightforward adaptation of the proof in Sec-
tion 4.2 for M = T2, we then get a sequence of unitary operators {Uk : Hk →
Hk}k∈N, k ∈ N and a sequence of points {pk ∈ T2}k∈N, such that for any f ∈
C∞(S2), we have the following estimate as k →+∞,

(4.63) ∥U−1
k QD

k (τ
∗
pk
f)Uk−TD

k (f)∥op =O(1/k3/2),



ALMOST REPRESENTATIONS OF ALGEBRAS AND QUANTIZATION 1625

where τp : T2 → T2 denotes the translation by p ∈ T2. As the common change of
variable (4.56) is invariant by translation, this readily implies the result. □

Theorem 4.4 is of specific interest in the theory of deformation quantization of
the Poisson algebra (C∞(M),{·, ·}). To see this, consider the following extension
of axiom (P3).

Definition 4.6. A geometric quantization {Tk : C∞(M) → L(Hk)}k∈N of a
closed symplectic manifold (M,ω) is said to satisfy the star product axiom if there
exists a collection of bi-differential operators Cj , j ∈ N, such that for all m ∈ N
and all f,g ∈ C∞(M),

(4.64) Tk(f)Tk(g) = Tk

(
fg+

m−1∑
j=1

1
kj

Cj(f,g)

)
+O(1/km).

The name for this axiom is justified by the fact that, together with the other
axioms of Definition 1.6, this induces a differential star product ∗ on the ring of
formal power series C∞(M,C)[[h̄]], with formal parameter h̄. Specifically, the for-
mula

(4.65) f ∗g := fg+
∞∑

j=1

h̄jCj(f,g),

for all f,g ∈ C∞(M), defines an associative unital C[[h̄]]-linear product ∗ on
C∞(M,C)[[h̄]] satisfying f ∗ g− g ∗ f = ih̄{f,g}+O(h̄2). Setting h̄ = 1/k, we
see that (4.6) reads formally as the star product axiom

(4.66) Tk(f)Tk(g) = Tk(f ∗g),

where this equality is understood as an asymptotic expansion with respect to the
operator norm.

Working with formal power series in h̄, one can extend the notions (4.7)
and (4.36) of a change of variable over any subset U ⊂M as a map

A : C∞(U,C)[[h̄]]→ C∞(U,C)[[h̄]]

satisfying A(1) = 1 and

(4.67) A(f) := f +

+∞∑
j=1

h̄jDjf,

for all compactly supported f ∈C∞(U), where Dj are differential operators for all
j ∈ N. This acts on a star product ∗ via the formula

(4.68) f ∗A g :=A−1(A(f)∗A(g)),
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where ∗A is defined on compactly supported functions f,g ∈C∞(U,C). In the the-
ory of deformation quantization, this is also called a star-equivalence. For change
of variables of the form A(f) = f + h̄Df for any f ∈ C∞(M), one readily checks
that ∗A is the star product (4.66) associated to the geometric quantization {TD

k :
C∞(M)→L(Hk)}k∈N of (4.7).

Following [25, §1, p. 229] (see also [19, §2, p. 220]), one can define the canon-
ical trace of a differential star product ⋆ over a closed symplectic manifold (M,ω)

of dimension dimM = 2d as the map trh̄ : C∞(M)[[h̄]]→ C[[h̄]] such that for any
f ∈ C∞(M) supported over a contractible Darboux chart U ⊂M , we have

(4.69) trh̄(f) = (2πh̄)−d

∫
X
AU (f)

ωd

d!
,

where AU : C∞(U)[[h̄]] → C∞(U)[[h̄]] is a change of variable making ⋆ equal to
the usual Moyal-Weyl star product over R2d in these Darboux charts. We will not
need the full definition of the Moyal-Weyl star product, but only that it satisfies
C+

1 = C−
2 = 0. The following result is then a consequence of Theorem 4.4.

COROLLARY 4.7. Let M = S2 or T2 be endowed with the standard volume
form ω of the total area 2π. Let {Tk : C∞(M)→L(Hk)}k∈N be a geometric quan-
tization satisfying the trace axiom of Definition 4.3 and the star product axiom of
Definition 4.6. Then for all f ∈ C∞(S2), we have the asymptotic expansion

trTk(f) = trh̄(f)+O(1/k),

as k = 1/h̄→+∞.

Proof. Take f ∈ C∞(M) to be compactly supported in a Darboux chart
U ⊂M , and let AU : C∞(U)[[h̄]] → C∞(U)[[h̄]] be a local change of variable
making the induced star product (4.65) equal to the Moyal-Weyl star product. Let
us write

(4.70) AU (f) = f + h̄DUf +O(h̄2),

and write C̃1 and C̃2 for the bi-differential operators of (4.65) associated with the
star product ∗AU

over U . Note that terms of order h̄2 and more do not affect C̃+
1

and C̃−
2 , and by formula (4.10), the condition C̃+

1 ≡ 0 determines DU : C∞(U)→
C∞(U) up to a derivation. In particular, by the trace axiom (4.47), one sees that
both the usual trace and the canonical trace change the same way under a change
of variable of the form (4.7). By Lemma 4.1, it suffices to show the result for
quantizations which already satisfy C+

1 ≡ 0.
Let then {Tk : C∞(M)→L(Hk)}k∈N be a geometric quantization with C+

1 ≡
0 and satisfying the trace axiom (4.47), so that we are under the hypotheses of
Theorem 4.4. Then by formula (4.10), the condition C̃+

1 ≡ 0 implies that DU :
C∞(U)→C∞(U) has to be a derivation in that case. Furthermore, formulas (4.10)
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and (4.13) show that in order to also have C̃−
2 ≡ 0, this derivation has to be of

the form DUf :=−θ(sgradf) for all compactly supported f ∈ C∞(U), where θ ∈
Ω1(M,R) satisfies

(4.71) C−
2 (f,g) =

i

2
dθ(sgradf,sgradg),

for all compactly supported f,g ∈ C∞(U). Note that this is compatible with for-
mula (4.6), as all 2-forms over a contractible open set U ⊂M are exact. Then by
definition (4.69) of the canonical trace, for all f ∈ C∞(M) with compact support
in U ⊂X , we then have

trh̄(f) =
1

2πh̄

∫
X
(f − h̄θ(sgradf))ω+O(h̄)

=
1

2πh̄

∫
X
(f + h̄fRU )ω+O(h̄),

(4.72)

where RU ∈ C∞(U) is defined by the formula

(4.73) dθ =: RUω|U .

Therefore, by formula (4.71), for all compactly supported f,g ∈ C∞(U), we have

(4.74) C−
2 (f,g) =− i

2
RU{f,g}.

By Theorem 4.4, the trace trTk(f) is given by the last term in formula (4.72),
and hence coincides with the canonical trace trh̄(f) up to O(1/k). This completes
the proof of the corollary. □

Corollary 4.7 naturally leads to the following conjecture.

CONJECTURE 4.8. Let {Tk : C∞(M)→L(Hk)}k∈N be a geometric quantiza-
tion of a closed symplectic manifold (M,ω) satisfying the trace axiom of Defini-
tion 4.3 and the star product axiom of Definition 4.6. Then for all f ∈C∞(M) and
m ∈ N, we have the asymptotic expansion

trTk(f) = trh̄(f)+O(1/km),

as k = 1/h̄→+∞.

The trace axiom of Definition 4.3 is a basic property of Berezin-Toeplitz quan-
tizations of closed Kähler manifolds, and the fact that these quantizations satisfy
the star product axiom of Definition 4.6 has been shown by Schlichenmaier in [28].
Then Conjecture 4.8 for Berezin-Toeplitz quantizations of closed Kähler manifolds
has been established by Hawkins in [17, Cor. 10.5].
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Remark 4.9. As explained for instance in [15, §6], there exists a notion of char-
acteristic class for differential star-products ∗ over symplectic manifolds, which has
been introduced by Deligne in [11] as an element c(⋆) of the affine space h̄−1[ω]+

H2(M,R)[[h̄]]. By the work of Fedosov [12] and Nest and Tsygan [25, 26], this
class is known to classify star-products up to star-equivalence (4.68). Then we have
the relation

(4.75) c(⋆) = h̄−1[ω]+ c[ω]+O(h̄),

where c ∈ R is the constant produced from Tk : C∞(M) → L(Hk), k ∈ N by
Lemma 4.1. Then for geometric quantizations satisfying star product axiom (4.66),
the proof of Theorem 1.8 computes this constant to be an integer via the formula
dimHk = k+ c for all k ∈ N. The Deligne-Fedosov class of the standard Berezin-
Toeplitz quantizations of closed Kähler manifolds has been computed by Hawkins
in [17, Th. 10.6] and Karabegov and Schlichenmaier in [20].

PHILIPPS-UNIVERSITÄT MARBURG, HANS-MEERWEIN-STRASSE 6,
35043 MARBURG, GERMANY

E-mail: ioos@mathematik.uni-marburg.de

EINSTEIN INSTITUTE OF MATHEMATICS, HEBREW UNIVERSITY, GIVAT RAM,
JERUSALEM 91904, ISRAEL

E-mail: kazhdan@math.huji.ac.il

SCHOOL OF MATHEMATICAL SCIENCES, TEL AVIV UNIVERSITY, RAMAT AVIV,
TEL AVIV 69978, ISRAEL

E-mail: polterov@tauex.tau.ac.il

REFERENCES

[1] G. B. Arfken, H. J. Harris, and F. E. Weber, Mathematical Methods for Physicists. A comprehensive guide,
7th ed., Academic Press, Oxford, 2013.

[2] A. Banyaga, The Structure of Classical Diffeomorphism Groups, Math. Appl., vol. 400, Kluwer Academic
Publishers Group, Dordrecht, 1997.

[3] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer, Quantum mechanics as a deforma-
tion of classical mechanics, Lett. Math. Phys. 1 (1975/77), no. 6, 521–530.

[4] X. Bin, Derivatives of the spectral function and Sobolev norms of eigenfunctions on a closed Riemannian
manifold, Ann. Global Anal. Geom. 26 (2004), no. 3, 231–252.

[5] M. Bordemann, E. Meinrenken, and M. Schlichenmaier, Toeplitz quantization of Kähler manifolds and
gl(N), N → ∞ limits, Comm. Math. Phys. 165 (1994), no. 2, 281–296.

[6] L. Boutet de Monvel and V. Guillemin, The Spectral Theory of Toeplitz Operators, Ann. of Math. Stud.,
vol. 99, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1981.



ALMOST REPRESENTATIONS OF ALGEBRAS AND QUANTIZATION 1629

[7] P. Busch, M. Grabowski, and P. J. Lahti, Operational Quantum Physics, Lecture Notes in Phys. Monogr.,
vol. 31, Springer-Verlag, Berlin, 1995.

[8] L. Charles, Semi-classical properties of geometric quantization with metaplectic correction, Comm. Math.
Phys. 270 (2007), no. 2, 445–480.

[9] , Subprincipal symbol for Toeplitz operators, Lett. Math. Phys. 106 (2016), no. 12, 1673–1694.
[10] M. De Chiffre, L. Glebsky, A. Lubotzky, and A. Thom, Stability, cohomology vanishing, and nonapprox-

imable groups, Forum Math. Sigma 8 (2020), Paper No. e18.
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