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Abstract We compute the second coefficient of the composition of two Berezin–Toeplitz
operators associated with the spinc Dirac operator on a symplectic manifold, making use of
the full-off diagonal expansion of the Bergman kernel.

1 Introduction

In [14], Ma and Marinescu studied in detail Berezin-Toeplitz quantization for symplectic
manifolds, introducing kernel calculus as a method to compute the coefficients of the asymp-
totic expansion of the associated Toeplitz operators. They considered the following situation:
let (X, ω) be a compact symplectic manifold of dimension 2n, and (E, hE ), (L , hL ) be Her-
mitian vector bundles on X with rk(L) = 1, endowed with Hermitian connections ∇E , ∇L .
If RL denotes the curvature of ∇L , we assume the following so-called prequantization con-
dition:

ω =
√−1

2π
RL . (1.1)

Let J ∈ End(T X) be an almost complex structure on T X compatible with ω, and let gT X

be the Riemannian metric on T X defined by

ω(u, v) = gT X (Ju, v), (1.2)

for any u, v ∈ T X . We denote by L p the pth tensor power of L and Dp the spinc Dirac
operator acting on the smooth sections of Ep := �(T ∗(0,1)X)⊗L p⊗E . Themetrics gT X , hL

and hE induce the usual L2-scalar product on the space L2(X, Ep) of the square integrable
sections of Ep . The orthogonal projection of L2(X, Ep) on Ker(Dp) with respect to this
product is denoted by Pp and is called theBergman projection. For f ∈ C∞(X,End(E)), the
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Berezin-Toeplitz quantization of f is the family {T f,p}p∈N of operators acting on L2(X, Ep)

by

T f,p = Pp f Pp : L2(X, Ep) → L2(X, Ep), (1.3)

where f denotes the operator acting by pointwise multiplication by f .
More generally, a family {Tp}p∈N of bounded operators acting on L2(X, Ep) is called a

Toeplitz operator if PpTp Pp = Tp for all p ∈ N, and if there exists a sequence of sections
gr ∈ C∞(X,End(E)) for all r ∈ N such that

Tp =
∞∑

r=0

Tgr ,p p
−r + O(p−∞), (1.4)

where, for all r ∈ N, the family of operators {Tgr ,p}p∈N is the Berezin-Toeplitz quantization
of gr in the sense of (1.3). Here the notation O(p−∞) means that, for all k ∈ N, the sum up
to order k is a O(p−k) of the left member for the operator norm.

In [14, Th.1.1], Ma and Marinescu proved that the set of Toeplitz operators as defined in
(1.4) forms an algebra. More precisely, given f, g ∈ C∞(X,End(E)), they established that

T f,pTg,p =
∞∑

r=0

p−r TCr ( f,g),p + O(p−∞), (1.5)

whereCr are bidifferential operators, withC0( f, g) = f g. In particular, we get the following
formula:

T f,pTg,p = T f g,p + O(p−1), (1.6)

which shows that the composition of two Toeplitz operators approach the usual pointwise
composition of endomorphisms in the semi-classical limit, when p tends to ∞. Moreover,
in the case f, g ∈ C∞(X), they showed that C1( f, g) − C1(g, f ) = √−1{ f, g}, where
{., .} denotes the Poisson bracket associated to the symplectic form 2πω. We thus get the
following formula:

[T f,p, Tg,p] = p−1T{ f,g},p + O(p−2), (1.7)

which shows that the family {T f,p}p∈N indeed satisfies the expected semi-classical limit for
a quantization.

Especially interesting is the case of J coming from a complex structure, making X into a
Kähler manifold. In this case, we ask (E, hE ), (L , hL ) to be holomorphic Hermitian vector
bundles, and ∇E ,∇L to be the associated holomorphic Hermitian connections. The spinc

Dirac operator Dp is then given by

Dp = √
2(∂

L p⊗E + ∂
L p⊗E,∗

), (1.8)

where ∂
L p⊗E

denotes the holomorphic ∂-operator on L p⊗E acting on theDolbeault complex

⊕q�
0,q(X, L p⊗E) = C∞(X, Ep), and ∂

L p⊗E,∗
its formal adjoint for the L2-scalar product.

By Hodge theory, we get

Ker(Dp|�0,q (X,L p⊗E)) 
 Hq(X, L p ⊗ E), (1.9)

where Hq(X, L p ⊗ E) denotes the qth Dolbeault cohomology group associated to L p ⊗ E .
The prequantization condition (1.1) implying L positive, by the Kodaira-Serre vanishing
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theorem we get for any q > 0,

Hq(X, L p ⊗ E) = 0, (1.10)

whenever p is sufficiently large. Picking such a p, the identification (1.9) together with
(1.10) imply Ker(Dp) 
 H0(X, L p ⊗ E), which gives back the usual setting of geometric
quantization on Kähler manifolds, the space H0(X, L p ⊗ E) being the space of holomorphic
sections of L p⊗E . In the general symplectic setting however, Dolbeault cohomology doesn’t
exist, and Ker(Dp) is then a natural generalization of the space H0(X, L p ⊗ E).

The theory of Berezin–Toeplitz quantization in the Kähler case for E = C has first been
developed by Bordemann, Meinrenken and Schlichenmaier [3] and Schlichenmaier [16].
Their approach is based on the work of Boutet de Monvel and Sjöstrand on the Szegö kernel
in [1], and the theory of Toeplitz structures developed by Boutet deMonvel and Guillemin [2]
(see also [4]).

In the Kähler case, the data given in (1.3) can be computed much more explicitly, and
in [15, Th.0.3], Ma and Marinescu gave the following formula for the second coefficient
C1( f, g) for f, g ∈ C∞(X,End(E)):

C1( f, g) = − 1

2π
〈∇1,0 f,∇0,1g〉, (1.11)

where ∇1,0 and ∇0,1 denote the holomorphic and anti-holomorphic part of the connection
on End(E) induced by ∇E , and 〈., .〉 denotes the pairing induced by gT X on T ∗X ⊗End(E)

with values in End(E). The formula (1.11) is compatible with the following description of
the Poisson bracket in the case E = C:

√−1{ f, g} = − 1

2π

(〈∇1,0 f,∇0,1g〉 − 〈∇1,0g,∇0,1 f 〉) . (1.12)

Ma and Marinescu also computed the coefficient C2( f, g) for f, g ∈ C∞(X), and gave
in [15, Th.0.3] formulas for the first coefficients of the expansion in p ∈ N of the kernel of
a Berezin-Toeplitz operator on the diagonal. These formulas have been used for the study
of canonical metrics via balanced embeddings by Fine in [9, Th.10] for the quantization of
the Lichnerowicz operator, and then by Keller, Meyer and Seyyedali in [11, Prop.3.6] for the
quantization of the Laplacian operator on vector bundles (see also [8] on this last topic). In
[10, Th.1.4, Th.1.5], Hsiao gave a new proof of [15, Th.0.2, Th.0.3] for E = C using results
from microlocal analysis of [1].

In the context of deformation quantization, the properties (1.6) and (1.7) in the case E = C

imply that the expansion (1.5) defines a star product on C∞(X), called the Berezin-Toeplitz
star product (see for instance [12, Rem.7.4.2] and [17]).

In this paper, we use methods developed in [14] as well as results of [13] in order to
compute C1( f, g) for f, g ∈ C∞(X,End(E)) in the general symplectic case described in
the beginning of this section. Analogous to (1.11), our result is:

Theorem 1.1 Let (X, ω) be a compact symplectic manifold equiped with a Hermitian line
bundlewithHermitian connection (L , hL ,∇L) satisfying the prequantization condition (1.1),
and let (E, hE ,∇E ) be a Hermitian vector bundle with Hermitian connection. Let J ∈
End(T X) be an almost complex structure on X, and gT X be the Riemannian metric defined
by (1.2). For any f, g ∈ C∞(X,End(E)), the second coefficient of the asymptotic expansion
of T f,pTg,p as in (1.5) is

C1( f, g) = − 1

2π
〈∇1,0 f,∇0,1g〉, (1.13)
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where ∇1,0 and ∇0,1 denote the holomorphic and anti-holomorphic part of the connection
on End(E) induced by ∇E , and 〈., .〉 denotes the pairing induced by gT X on T ∗X ⊗End(E)

with values in End(E).

In the case E = C, Charles treated the theory of Berezin-Toeplitz quantization for
symplectic manifolds in [5] using microlocal analysis of [2], and computed the coefficient
C1( f, g) for f, g ∈ C∞(X) in [6].

2 The local model for Toeplitz operators

This section is dedicated to set the context and the notations, and to describe the local model
which will be used in the next section for the computations.

2.1 Setting

Let (X, ω) be a compact symplectic manifold, endowed with an almost complex structure J
on its tangent bundle T X . We denote by gT X the Riemannian metric defined by (1.2), and by
∇T X the associated Levi-Civita connection on T X . The almost complex structure J induces
a splitting

T X ⊗ C = T (1,0)X ⊕ T (0,1)X (2.1)

on the complexification of the tangent bundle into the eigenspaces of J correponding to the
eigenvalues

√−1 and −√−1 respectively. This allows us to define the total exterior product
bundle�(T ∗(0,1)X), which is actually a Clifford bundle: for any v ∈ T X with decomposition
v = v1,0 + v0,1 according to (2.1), we define the Clifford action of v on �(T ∗(0,1)X) by

c(v) = √
2(v∗

1,0 − iv0,1), (2.2)

where v∗
1,0 denotes the wedge product by the metric dual of v1,0 in T ∗(0,1)X , and iv0,1 denotes

the contraction by v0,1 ∈ T (0,1)X . Let ∇det be the connection on det(T (1,0)X) induced by
the natural projection of ∇T X on T (1,0)X via the decomposition (2.1). We denote by ∇Cl the
Clifford connection on �(T ∗(0,1)X) induced by ∇T X and ∇det as defined in [12, §1.3.1].

Recall now that ∇E and ∇L are Hermitian connections on the Hermitian vector bundle
(E, hE ) and the Hermitian line bundle (L , hL ) respectively. The vector bundle

Ep = �(T ∗(0,1)X) ⊗ L p ⊗ E (2.3)

is naturally endowed with the Hermitian product induced by gT X , hL and hE . Then there is
a natural L2-scalar product on C∞(X, Ep) induced by the Hermitian product of Ep and the
Riemannian volume form dvX on X associated to gT X . We denote by ∇Ep the connection
on Ep induced by ∇Cl,∇L and ∇E . We define then the spinc Dirac operator Dp locally by

Dp =
2n∑

j=1

c(e j )∇Ep
e j : C∞(X, Ep) → C∞(X, Ep), (2.4)

where {e j }2nj=1 is a local orthonormal frame of T X with respect to gT X . Then Dp is a formally

self-adjoint operator on C∞(X, Ep) with respect to the L2-scalar product.
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2.2 Model operator

Let us fix a point x0 ∈ X , and let us choose ε0 > 0 so that the exponential map at x0
induces a diffeomorphism between the geodesic ball BX (x0, ε0) ⊂ X and the open ball
B(0, ε0) ⊂ Tx0 X , where Tx0 X is endowed with the Euclidean metric induced by gT X .
We trivialize L , E and Ep over B(0, ε0) by identification with their respective fibre at x0
through parallel transport with respect to their respective connections along geodesics. We
then identify Lx0 with C choosing a unit vector. Let us note that as End(L p

x0) is canonically
identified with C, our results will not depend on this choice.

Let {w j }nj=1 be an orthonormal basis of T (1,0)
x0 X with respect to the Hermitian product

induced by gT X . This induces a basis {e j }2nj=1 of Tx0 X , orthonormal with respect to the

Euclidean product induced by gT X , such that

e2 j−1 = 1√
2
(w j + w j ) and e2 j =

√−1√
2

(w j − w j ), (2.5)

for any 1 ≤ j ≤ n. We use this basis to identify Tx0 X with R
2n . We denote by Z =

(Z1, . . . , Z2n) the induced real coordinates, and by z = (z1, . . . , zn) the complex coordinates
on C

n such that zi = Z2i−1 + √−1Z2i for any 1 ≤ i ≤ n. We thus have e j = ∂/∂Z j for
any 1 ≤ j ≤ 2n, and the following equality of vector fields holds:

2n∑

i=1

Zi
∂

∂Zi
=

n∑

j=1

(
z j

∂

∂z j
+ z̄ j

∂

∂ z̄ j

)
, (2.6)

which is not to be confused with the equality of coordinates Z = (z+ z̄)/2. We write dZ for
the canonical Lebesgue measure of R2n with respect to the variable Z .

Let us now consider the Hilbert space L2(R2n, (�(T ∗(0,1)X) ⊗ E)x0) with the L
2-scalar

product induced by the Hermitian product on (�(T ∗(0,1)X) ⊗ E)x0 and the Lebesgue mea-
sure of R2n . By the identification Tx0 X ∼= R

2n and the trivializations above, we identify
sections in L2(X, Ep) with sufficiently small compact support around x0 with functions in
L2(R2n, (�(T ∗(0,1)X) ⊗ E)x0).

It is shown in the complex case in [12, Chap.4] and generalized to the symplectic case in
[12, Chap.8] how the operator (Dp)

2 is approximated for large p, after a convenient rescaling
in

√
p, by an operatorL 0

2 acting onC∞(R2n, (�(T ∗(0,1)X)⊗E)x0) defined by the formulas

L 0
2 = L + 4πw j iw j , L =

n∑

j=1

b jb
+
j ,

bi = −2
∂

∂zi
+ π z̄i , b+

i = 2
∂

∂ z̄i
+ π zi , (2.7)

for any 1 ≤ i ≤ n, where zi and z̄i denote the scalar multiplication on (�(T ∗(0,1)X) ⊗ E)x0
by zi and z̄i respectively. The differential operator L acts on the scalar part of smooth
functions with values in (�(T ∗(0,1)X)⊗ E)x0 , and can thus be seen as a differential operator
on C∞(R2n), still denoted by L . We call L the model operator. It is a densely defined
self-adjoint operator on L2(R2n) and have the following spectral properties:
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Proposition 2.1 [12, §4.1.20] The spectrum of L on L2(R2n) is given by

Spec(L ) =
{
4π

n∑

i=1

αi

∣∣∣∣ α = (α1, . . . , αn) ∈ N
n

}
, (2.8)

and an orthogonal basis of the eigenspace indexed by α ∈ N
n as in (2.8) is given by

bα

(
zβ exp

(
−π

2

n∑

i=1

|zi |2
))

for any β ∈ N
n . (2.9)

The corresponding orthogonal projection P : L2(R2n) → Ker(L ) has smooth kernel
with respect to dZ , which for all Z , Z ′ ∈ R

2n is easily computed to be

P(Z , Z ′) = exp

(
−π

2

n∑

i=1

(|zi |2 + |z′i |2 − 2zi z̄
′
i )

)
. (2.10)

As the operator L in (2.7) acts only on the scalar part of functions with values in
(�(T ∗(0,1)X) ⊗ E)x0 , the kernel of the associated projection

P : L2(R2n, (�(T ∗(0,1)X) ⊗ E)x0)) → Ker(L ) (2.11)

acts on (�(T ∗(0,1)X) ⊗ E)x0 by scalar multiplication and is still given by (2.10).
The space (�(T ∗(0,1)X) ⊗ E)x0 has a natural Z-graduation given by the one on

�(T ∗(0,1)X), and we denote by (C ⊗ E)x0 the degree 0 subspace of (�(T ∗(0,1)X) ⊗ E)x0
for this graduation. We write

IC⊗E : (�(T ∗(0,1)X) ⊗ E)x0 → (C ⊗ E)x0 (2.12)

for the natural projection, which is orthogonal with respect to the Hermitian product. It
induces a projection on the L2-sections, still denoted by IC⊗E , which is then orthogonal with
respect to the L2-scalar product.

The two terms definingL 0
2 in (2.7) are positive commuting operators, and the orthogonal

projections on their kernels in L2(R2n, (�(T ∗(0,1)X) ⊗ E)x0) are given by P and IC⊗E

respectively. Consequently, the orthogonal projection on the kernel ofL 0
2 , seen as a densely

defined self-adjoint operator acting on L2(R2n, (�(T ∗(0,1)X) ⊗ E)x0), is given by

P = P IC⊗E : L2(R2n, (�(T ∗(0,1)X) ⊗ E)x0) → Ker(L 0
2 ). (2.13)

We denote by Ker(L 0
2 )⊥ the orthogonal space of Ker(L 0

2 ) in L2(R2n, (�(T ∗(0,1)X) ⊗
E)x0), and by P⊥ the associated orthogonal projection. Using Proposition 2.1 and (2.7), it
is easy to compute explicitly the inverse ofL 0

2 on Ker(L 0
2 )⊥ by inverting its eigenvalues. It

thus makes sense to write

(L 0
2 )−1P⊥ : L2(R2n, (�(T ∗(0,1)X) ⊗ E)x0) → L2(R2n, (�(T ∗(0,1)X) ⊗ E)x0).

(2.14)

2.3 Kernel calculus

We introduce now the kernel calculus on C
n developed by Ma and Marinescu [14], which

will be the basis for our calculations in the next section.
If T is a bounded operator on L2(R2n, (�(T ∗(0,1)X) ⊗ E)x0) with smooth kernel with

respect to dZ , we will denote its evaluation at Z , Z ′ ∈ R
2n by

T (Z , Z ′) ∈ End(�(T ∗(0,1)X) ⊗ E)x0 . (2.15)
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If F(Z , Z ′) ∈ End(�(T ∗(0,1)X)⊗E)x0 is a polynomial in Z , Z ′ ∈ R
2n , we denote by FP

the operator on L2(R2n, (�(T ∗(0,1)X)⊗ E)x0) defined by the kernel F(Z , Z ′)P(Z , Z ′), so
that

(FP)(Z , Z ′) = F(Z , Z ′)P(Z , Z ′), (2.16)

for all Z , Z ′ ∈ R
2n . By the explicit expression of P(Z , Z ′) in (2.10), the formula (2.16)

defines in fact a bounded operator on L2(R2n, (�(T ∗(0,1)X) ⊗ E)x0).
Using these notations, we can state the following result, which comes essentially from

[14, §2].

Proposition 2.2 For any Q(Z , Z ′) and F(Z , Z ′) ∈ End(�(T ∗(0,1)X) ⊗ E)x0 , polynomials
in Z , Z ′ ∈ R

2n, there exists K [F, Q] (Z , Z ′) ∈ End(�(T ∗(0,1)X) ⊗ E)x0 , polynomial in
Z , Z ′ ∈ R

2n, such that

K [F, Q]P = (FP)(QP), (2.17)

where the left hand side denotes the composition of two operators defined by their kernels as
in (2.16).

Furthermore, for all F(Z , Z ′), G(Z , Z ′) and H(Z , Z ′) ∈ End(�(T ∗(0,1)X) ⊗ E)x0 ,
polynomials in Z , Z ′ ∈ R

2n, the following formulas hold:

K [F,K [G, H ]] = K[K[
F,G

]
, H

]
, (2.18)

K [
IC⊗E , IC⊗E

] = IC⊗E . (2.19)

For any q(Z) polynomial in Z with scalar values,

K [F, q(Z)G] = K [
q(Z ′)F,G

]
. (2.20)

For any Q(Z) polynomial in Z with values in End(Ex0),

K [Q(Z)F,G] = Q(Z)K [F,G] ,

K [
F,GQ(Z ′)

] = K [F,G] Q(Z ′). (2.21)

Finally, for A ∈ End(Ex0) and G(Z , Z ′) ∈ End(�(T ∗(0,1)X) ⊗ E)x0 polynomial in
Z , Z ′ ∈ R

2n commuting with A, we have:

AK [G, F] = K [GA, F] = K [G, AF] ,

K [FA,G] = K [F, AG] = K [F,G] A. (2.22)

Proof Let us first deal with the case F = 1. The kernel of the composition P(GP) is
given byP(G(Z , Z ′)P(Z , Z ′)), where the operatorP acts on the variable Z ∈ R

2n . Thus
the variable Z ′ ∈ R

2n acts as a parameter in this situation, and we are reduced to the case
G(Z , Z ′) = G(Z) not depending on Z ′. Using Proposition 2.1, this can be computed by
induction on the degree of G in z, z̄ ∈ C

n :
First, by Proposition 2.1 and (2.10), we get

P(zβP(Z , Z ′)) = zβP(Z , Z ′), (2.23)

for any β ∈ N
n . Next, let us notice that by (2.7) and (2.13),

biP(Z , Z ′) = 2π(z̄i − z̄′i )P(Z , Z ′). (2.24)
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Here, bi defined in (2.7) acts on the Z variable. As biP(Z , Z ′) is in the orthogonal of
Ker(L ) by Proposition 2.1, we get using (2.23),

P(z̄iP(Z , Z ′)) = z̄′iP(Z , Z ′). (2.25)

Now by the definition of bi in (2.7), we know that

[G(Z), bi ] = 2
∂

∂zi
G(Z), (2.26)

for any G(Z) ∈ End(�(T ∗(0,1)X) ⊗ E)x0 polynomial in Z ∈ R
2n . Using the fact that

bαzβP(Z , Z ′) is in Ker(L )⊥ by Proposition 2.1, we can compute the case of general F by
induction through repeated applications of (2.24) and (2.26).

Now for the general case, if F1(Z) and F2(Z ′) ∈ End(�(T ∗(0,1)X) ⊗ E)x0 are two
polynomials in Z and Z ′ ∈ R

2n respectively, by the definition of operators associated to
kernels as in (2.16), we have the following two easy facts:

(F1(Z)GP)(Z , Z ′) = F1(Z)(GP)(Z , Z ′),
(GF2(Z

′)P)(Z , Z ′) = (GP)(Z , Z ′)F2(Z ′), (2.27)

where we use for the second equality the fact that P(Z , Z ′) has scalar values by (2.10). By
(2.17) and the usual formula for composition of kernels, recall that

(K [F,G]P) (Z , Z ′) =
∫

R2n
F(Z , Z ′′)P(Z , Z ′′)G(Z ′′, Z ′)P(Z ′′, Z ′)dZ ′′. (2.28)

Then from (2.27) and (2.28), for any F(Z , Z ′) ∈ End(�(T ∗(0,1)X) ⊗ E)x0 polynomial
in Z , Z ′ ∈ R

2n ,

(K [F1(Z)F,G]P) (Z , Z ′) = F1(Z) (K [F,G]P) (Z , Z ′),
(K [

FF2(Z
′),G

]
P

)
(Z , Z ′) = (K [F, F2(Z)G]P) (Z , Z ′), (2.29)

so the general case reduces to the previous one. As a byproduct of (2.27) and (2.29), we get
(2.20) and (2.21) as well.

The associativity (2.18) is obvious from (2.17). As P(Z , Z ′) commutes with IC⊗E by
(2.10), we get (2.19). Finally, (2.27) and (2.29) applied to A ∈ End(Ex0) constant and
commuting with G gives (2.22). ��

Proposition 2.2, together with its proof, is at the basis of the computations in this paper.
As an application, we compute the following special cases of the kernel calculus for any
1 ≤ i, j ≤ n, which will be used constantly in the forthcoming computations:

K [
IC⊗E , z̄ j IC⊗E

] = z̄′j IC⊗E , K [
IC⊗E , z j IC⊗E

] = z j IC⊗E ,

K [
zi IC⊗E , z̄ j IC⊗E

] = zi z̄
′
j IC⊗E , K [

z̄i IC⊗E , z j IC⊗E
] = z̄i z j IC⊗E ,

K [
z′i IC⊗E , z̄ j IC⊗E

] = 1

π
δi j IC⊗E + zi z̄

′
j IC⊗E ,

K [
z̄′i IC⊗E , z j IC⊗E

] = 1

π
δi j IC⊗E + z̄′i z j IC⊗E ,

K [
IC⊗E , z̄i z j IC⊗E

] = 1

π
δi j IC⊗E + z̄′i z j IC⊗E ,

K [
IC⊗E , z′i IC⊗E

] = z′i IC⊗E , K [
IC⊗E , z̄′i IC⊗E

] = z̄′i IC⊗E ,

K [
IC⊗E , zi z j IC⊗E

] = zi z j IC⊗E , K [
IC⊗E , z̄i z̄ j IC⊗E

] = z̄′i z̄′j IC⊗E .

(2.30)
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3 Berezin–Toeplitz quantization and Bergman kernel

In this section, we recall the results of [12–14] on the reduction of Berezin-Toeplitz quan-
tization to the local model described in Sect. 2, and then go on to the computation of the
second coefficient of the asymptotic expansion. The general reference for the background on
the theory is [12].

3.1 The asymptotic expansion of Toeplitz operators

For any p ∈ N, let Tp be an operator acting on L2(X, Ep)with smooth kernel Tp(x, x ′)with
respect to dvX at x, x ′ ∈ X . For all x0 ∈ X , it induces

Tp,x0(Z , Z ′) ∈ End(�(T ∗(0,1)X) ⊗ E)x0 (3.1)

through the trivializations given in Sect. 2, where Z , Z ′ ∈ B(0, ε0) ⊂ Tx0 X 
 R
2n are the

respective images of x, x ′ ∈ BX (x0, ε0) ⊂ X in the exponential coordinates.
To estimate thekernels of any family {Tp}p∈N of operators actingon L2(X, (�(T ∗(0,1)X)⊗

E)x0), we will use the following notation given in [14, Not.4.4]: we write

p−nTp,x0(Z , Z ′) ∼=
∞∑

r=0

(Qr,x0P)
(√

pZ ,
√
pZ ′) p−r/2 + O(p−∞), (3.2)

with {Qr,x0(Z , Z ′)}r∈N a family of polynomials in Z , Z ′ ∈ R
2n with values in

End(�(T ∗(0,1)X) ⊗ E)x0 and depending smoothly on x0 ∈ X , if for any k ∈ N, there
is ε > 0,C0 > 0 such that for any l ∈ N, there exist C > 0, M ∈ N, such that for
|Z |, |Z ′| < ε, the following estimate holds:

∣∣∣∣∣p
−nTp,x0(Z , Z ′)κ1/2

x0 (Z)κ
1/2
x0 (Z ′) −

k∑

r=0

(Qr,x0P)
(√

pZ ,
√
pZ ′) p−r/2

∣∣∣∣∣
l

≤ Cp− k+1
2

(
1 + √

p|Z | + √
p|Z ′|)M exp

(−C0
√
p|Z − Z ′|) + O(p−∞). (3.3)

Here |.|l denotes theC l normwith respect to x0 ∈ X with respect to the induced connection
on the pullback bundle π∗(End(�(T ∗(0,1)X) ⊗ E)) over T X ×X T X , where π : T X ×X

T X → X is the fibre product of T X with itself over X . In the same way, when we say that
a polynomial in Z , Z ′ ∈ R

2n with values in End(�(T ∗(0,1)X) ⊗ E)x0 depends smoothly on
x0 ∈ X , it is in that sense.

The function κx0 ∈ C∞(B(0, ε0)) is defined for Z ∈ B(0, ε0) ⊂ R
2n by

dvX (Z) = κx0(Z)dZ . (3.4)

Its appearance in the formula (3.3) is necessary to make the comparison between kernels
consistent. Note that κx0(0) = 1.

We will apply the notation (3.3) to estimate the kernel of the Bergman projection Pp on
Ker(Dp) as defined in the introduction, namely through the following off-diagonal expansion
of the Bergman kernel:

Theorem 3.1 [7, Th.4.18’] There exists a family {Jr,x0}r∈N of polynomials in Z , Z ′ ∈ R
2n

with values in End(�(T ∗(0,1)X) ⊗ E)x0 and depending smoothly on x0 ∈ X such that the
following expansion holds in the sense of (3.3):

p−n Pp,x0(Z , Z ′) ∼=
∞∑

r=0

(Jr,x0P)(
√
pZ ,

√
pZ ′)p−r/2 + O(p−∞). (3.5)
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Proposition 3.1 gives a strong control on the Bergman kernel outside the diagonal, and is
used in [14] to prove the following result:

Theorem 3.2 [14, Th.1.1] Let f and g ∈ C∞(X,End(E)). There exist families of polyno-
mials in Z , Z ′ ∈ R

2n with values in End(�(T ∗(0,1)X) ⊗ E)x0 and depending smoothly on
x0 ∈ X, respectively denoted by {Qr,x0( f )}r∈N and {Qr,x0( f, g)}r∈N, such that the following
expansions hold in the sense of (3.2):

p−nT f,p,x0(Z , Z ′) ∼=
∞∑

r=0

(Qr,x0( f )P)(
√
pZ ,

√
pZ ′)p−r/2 + O(p−∞), (3.6)

p−n(T f,pTg,p)x0(Z , Z ′) ∼=
∞∑

r=0

(Qr,x0( f, g)P)(
√
pZ ,

√
pZ ′)p−r/2 + O(p−∞). (3.7)

Recall that in Sect. 2, we defined an operator L 0
2 aproximating Dp for large p, after a

convenient rescaling in
√
p. We can refine this by the following (see [12, §4.1.3] for a precise

statement): after a convenient rescaling in
√
p =: 1/t , the restriction of Dp on BX (x0, ε0)

is equal, through the trivializations of Sect. 2, to an operator L t
2 on B(0, ε0) satisfying

L t
2 = L 0

2 +
m∑

r=1

trOr + O(tm+1), (3.8)

for anym ∈ N, where {Or }r∈N is a family of differential operators of order equal or less than
2, with coefficients explicitly computable in term of local data, and where the differential
operator O(tm+1) has its coefficients and their derivatives up to order k dominated byCktm+1

for any k ∈ N.
The family of polynomials {Jr,x0}r∈N defined in (3.5) can then be computed explicitly by

induction using (3.8). In particular, the following lemma, which has been established in [13,
§2.2], gives the first three elements of this family:

Lemma 3.3 For O1 and O2 defined by (3.8), the following formulas hold:

J0,x0P = P, i.e. J0,x0 = IC⊗E , (3.9)

J1,x0P = −(L 0
2 )−1P⊥O1P − PO1(L

0
2 )−1P⊥, (3.10)

J2,x0P = (L 0
2 )−1P⊥O1(L

0
2 )−1P⊥O1P − (L 0

2 )−1P⊥O2P

+ PO1(L
0
2 )−1P⊥O1(L

0
2 )−1P⊥ − PO2(L

0
2 )−1P⊥

+ (L 0
2 )−1P⊥O1PO1(L

0
2 )−1P⊥ − PO1(L

0
2 )−2P⊥O1P. (3.11)

Moreover, O1 commutes with any A ∈ End(Ex0), and we have the formula

PO1P = 0. (3.12)

In particular, J0,x0 and J1,x0 commute with any A ∈ End(Ex0).

See also [12, §4.1.7] for a detailed exposition in the complex case. The assertion that O1

commutes with endomorphisms of Ex0 is clear from the explicit description given in [13,
§2.2]. This, together with the fact that P and L 0

2 act on End(Ex0) by scalar multiplication,
implies the last assertion. We point out that due to (3.12), we give in (3.11) a simpler formula
than the one appearing in [12, §4.1.7].

Following the notations at the beginning of this section, for any f ∈ C∞(X,End(E)),
we write fx0 for the induced function on B(0, ε0) ⊂ Tx0 X with values in End(Ex0) through
the trivialization described in Sect. 2. Note that in particular, fx0(0) = f (x0).
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To describe the families {Qr,x0( f )}r∈N and {Qr,x0( f, g)}r∈N defined in (3.6) and (3.7)
respectively, we will need the introduction of the kernel calculus presented in Sect. 2. This is
done in the next lemma, which gives as well a formula for the coefficient C1( f, g) of (1.5).

Lemma 3.4 [14, Lem.4.6, §4.3] For f and g ∈ C∞(X,End(E)), the following formulas
hold:

Qr,x0( f, g) =
∑

r1+r2=r

K [Qr1,x0( f ),Qr1,x0(g)
]
, (3.13)

Qr,x0( f ) =
∑

r1+r2+|α|=r

K
⎡

⎣Jr1,x0 ,
∑

|α|=2

∂2 fx0
∂Zα

(0)
Zα

α! Jr2,x0
⎤

⎦ , (3.14)

Q1,x0( f ) = f (x0)J1,x0 + K
⎡

⎣J0,x0 ,
2n∑

j=1

∂ fx0
∂Z j

(0)Z j J0,x0

⎤

⎦ , (3.15)

and for C1( f, g) ∈ C∞(X,End(E)) defined by (1.5), we have

C1( f, g)(x0)IC⊗E = Q2,x0( f, g)(0, 0) − Q2,x0( f g)(0, 0). (3.16)

Note that the assertion (3.13) follows formally from the definitions of Qr,x0( f, g) and
Qr,x0( f ) in Proposition 3.2 and the definition ofK [., .] in (2.17). In the sameway, considering
the Taylor expansion of fx0 at 0, equation (3.14) follows formally from Proposition 3.1,
Proposition 3.2 and the definition of T f,p in (1.3).

As an illustration, let us give the calculation leading to (3.15). Notice first that from the
identity T f,p = Pp for f = 1, the definitions of Jr,x0 ,Qr,x0 in (3.5), (3.6) and (3.13), we get

J1,x0 = K [
J0,x0 , J1,x0

] + K [
J1,x0 , J0,x0

]
. (3.17)

But J0,x0 and J1,x0 commute with any A ∈ End(Ex0) by Proposition 3.3. Thus

K [
J1,x0 , f (x0)J0,x0

] = f (x0)K
[
J1,x0 , J0,x0

]
,

K [
J0,x0 , f (x0)J1,x0

] = f (x0)K
[
J0,x0 , J1,x0

]
. (3.18)

The assertion (3.15) then follows directly from (3.17) and (3.18).
Finally, (3.16) follows from (1.6), and can be found in [14, (4.82)]. Notice that (3.16) says

in particular that the right hand side preserves the degree and vanishes on elements of degree
> 0, a fact which is absolutely not obvious from the formulas (3.13) and (3.14).

Thanks to the known eigenvalues of (L 0
2 )−1P⊥ coming from Proposition 2.1 and the

explicit expression of O1 given in [13, §2.2], the terms appearing in Proposition 3.4 can be
computed explicitly. We will only need the following special cases.

Lemma 3.5 [13, (2.33), (2.34)] Let 〈., .〉 be theC-bilinear product on Tx0 X ⊗C induced by
gT X and let ∇X be the connection induced on tensors by the Levi-Civita connection ∇T X .
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Then the following formulas hold:

(
PO1(L

0
2 )−1P⊥)

(0, Z ′) =
n∑

i,l,m=1

2
√−1

3
z′i

〈(
∇X

∂
∂zi

J

)
∂

∂zl
,

∂

∂zm

〉

×IC⊗E i ∂
∂ z̄m

i ∂
∂ z̄l

P (0, Z ′), (3.19)

(
PO1(L

0
2 )−1P⊥)

(Z , 0) =
n∑

i,l,m=1

√−1

3
zi

〈(
∇X

∂
∂zi

J

)
∂

∂zl
,

∂

∂zm

〉

×IC⊗E i ∂
∂ z̄l

i ∂
∂ z̄m

P (Z , 0), (3.20)

(
(L 0

2 )−1P⊥O1P
)

(Z , 0) =
n∑

i,l,m=1

−
√−1

6
z̄i

〈(
∇X

∂
∂ z̄i

J

)
∂

∂zl
,

∂

∂zm

〉

×dz̄l d z̄m IC⊗EP (Z , 0). (3.21)

In the last formula, dz̄ld z̄m denotes the wedge product in �(T ∗(0,1)X) by dz̄ld z̄m.

3.2 Calculation of the second coefficient

Let f and g ∈ C∞(X,End(E)) be fixed in all the sequel. In this last part, we will use the
results summarized in the previous sections in order to compute the coefficient C1( f, g) ∈
C∞(X,End(E)) defined in (1.5), thus giving a proof of Proposition 1.1.

Recall that by Proposition 2.2, the polynomials J1,x0 and J2,x0 commute with any A ∈
End(Ex0), thus in particular with h(x0) = hx0(0) for any h ∈ C∞(X,End(E)). Thus from
(2.19), (2.22), (3.9) and (3.14), we have

Q0,x0(h) = K [
IC⊗E , h(x0)IC⊗E

] = h(x0)IC⊗E . (3.22)

Let us develop the terms in the expression of C1( f, g) given by (3.16). By (3.13) and
(3.22), we get on one hand

Q2,x0( f, g) = K [
f (x0)J0,x0 ,Q2,x0(g)

] + K [Q2,x0( f ), g(x0)J0,x0
]

+K [
Q1,x0( f ), Q1,x0(g)

]
. (3.23)

On another hand, we get from Proposition 2.2, Proposition 3.3 and (3.14) that for any
h ∈ C∞(X,End(E)), thus in particular for h = f g,

Q2,x0(h) = h(x0)K
[
J0,x0 , J2,x0

] + K [
J2,x0 , J0,x0

]
h(x0)

+ h(x0)K
[
J1,x0 , J1,x0

] +
2n∑

j=1

∂hx0
∂Z j

(0)K [
J1,x0 , Z j J0,x0

]

+
2n∑

j=1

∂hx0
∂Z j

(0)K [
J0,x0 , Z j J1,x0

]

+
∑

|α|=2

∂2hx0
∂Zα

(0)K
[
J0,x0 ,

Zα

α! J0,x0
]

. (3.24)

The computation of C1( f, g) will be done in three steps: we will first use Proposition 2.2
to simplify these expressions everywhere it’s possible, then use Proposition 3.3 and formal
calculus of operators to cancel most of the terms. Finally, we will use Proposition 3.5 and
the kernel calculus of the previous section to handle the terms containing Z .
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We first develop one by one the terms of (3.23). ExpandingQ2,x0(g) inside the expression
K [

f (x0)J0,x0 ,Q2,x0(g)
]
using (3.24) and simplifying with Proposition 2.2,

K [
f (x0)J0,x0 ,Q2,x0(g)

] = f (x0)g(x0)K
[
J0,x0 , J2,x0

]

+ f (x0)K
[
J0,x0 ,K

[
J2,x0 , J0,x0

]]
g(x0)

+ f (x0)g(x0)K
[
J0,x0 ,K

[
J1,x0 , J1,x0

]]

+ f (x0)
2n∑

j=1

∂gx0
∂Z j

(0)K [
J0,x0 ,K

[
J1,x0 , Z j J0,x0

]]

+ f (x0)
2n∑

j=1

∂gx0
∂Z j

(0)K [
J0,x0 , Z j J1,x0

]

+ f (x0)
∑

|α|=2

∂2gx0
∂Zα

(0)K
[
J0,x0 ,

Zα

α! J0,x0
]

. (3.25)

We expand in the same way Q2,x0( f ) inside K
[Q2,x0( f ), g(x0)J0,x0

]
using Proposition

2.2 and (3.24),

K [Q2,x0( f ), g(x0)J0,x0
] = K [

J2,x0 , J0,x0
]
f (x0)g(x0)

+ f (x0)K
[K[

J0,x0 , J2,x0
]
, J0,x0

]
g(x0)

+ f (x0)g(x0)K
[K[

J1,x0 , J1,x0
]
, J0,x0

]

+
2n∑

j=1

∂ fx0
∂Z j

(0)g(x0)K
[K[

J1,x0 , Z j J0,x0
]
, J0,x0

]

+
2n∑

j=1

∂ fx0
∂Z j

(0)g(x0)K
[K[

J0,x0 , Z j J1,x0
]
, J0,x0

]

+
∑

|α|=2

∂2 fx0
∂Zα

(0)g(x0)K
[
K

[
J0,x0 ,

Zα

α! J0,x0
]

, J0,x0

]
.

(3.26)

We then use Proposition 2.2 and (3.15) to expand Q1,x0( f ) and Q1,x0(g) inside the last
term of (3.23),

K [Q1,x0 ( f ),Q1,x0 (g)
]

= f (x0)g(x0)K
[
J1,x0 , J1,x0

]

+ f (x0)
2n∑

j=1

∂gx0
∂Z j

(0)K [
J1,x0 ,K

[
J0,x0 , Z j J0,x0

]]

+
2n∑

j=1

∂ fx0
∂Z j

(0)g(x0)K
[K[

J0,x0 , Z j J0,x0
]
, J1,x0

]

+
2n∑

i, j=1

+K
[
K

[
J0,x0 ,

2n∑

i=1

∂ fx0
∂Zi

(0)Zi J0,x0

]
,K

[
J0,x0 ,

∂gx0
∂Z j

(0)Z j J0,x0

]]
. (3.27)
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Let us now add together (3.25), (3.26) and (3.27) to get (3.23). We first point out some
useful cancellations: by (2.17) and (3.10), we get

K [
J0,x0 ,K

[
J1,x0 , J1,x0

]]
P = P(J1,x0P)(J1,x0P)P

= PO1(L
0
2 )−2P⊥O1P, (3.28)

K[K[
J1,x0 , J1,x0

]
, J0,x0

]
P = PO1(L

0
2 )−2P⊥O1P. (3.29)

On another hand, by (2.17), (3.9) and (3.11), we get

K [
J0,x0 ,K

[
J2,x0 , J0,x0

]]
P = K[K[

J0,x0 , J2,x0
]
, J0,x0

]
P

= P(J2,x0P)P

= −PO1(L
0
2 )−2P⊥O1P. (3.30)

As the operator on the right hand side of the Eqs. (3.28)–(3.30) commutes with constant
endomorphisms by Proposition 3.3, Eqs. (3.28)–(3.30) and (2.22) show that the second and
third terms of (3.25) cancel each other, as well as the second and third terms of (3.26).

Now, in the differenceQ2,x0( f, g)−Q2,x0( f g), the first three terms of (3.24) with h = f g
cancel with the first terms of (3.25), (3.26) and (3.27) respectively.

Using (3.9) and the cancellations above, we are now ready to describe the terms of
Q2,x0( f, g) − Q2,x0( f g). Let us define I1, I2, I3 and I4, polynomials in Z , Z ′ ∈ R

2n with
values in End(�(T ∗(0,1)X) ⊗ E)x0 , by the following formulas:

I1 = −
∑

|α|=2

∂2( f g)x0
∂Zα

(0)K
[
IC⊗E ,

Zα

α! IC⊗E

]

+ f (x0)
∑

|α|=2

∂2gx0
∂Zα

(0)K
[
IC⊗E ,

Zα

α! IC⊗E

]

+
∑

|α|=2

∂2 fx0
∂Zα

(0)g(x0)K
[
K

[
IC⊗E ,

Zα

α! IC⊗E

]
, IC⊗E

]

+
2n∑

i, j=1

K
[
K

[
IC⊗E ,

∂ fx0
∂Zi

(0)Zi IC⊗E

]
,K

[
IC⊗E ,

∂gx0
∂Z j

(0)Z j IC⊗E

]]
, (3.31)

I2 = f (x0)
2n∑

j=1

∂gx0
∂Z j

(0)K [
IC⊗E ,K [

J1,x0 , Z j IC⊗E
]]

+
2n∑

j=1

∂ fx0
∂Z j

(0)g(x0)K
[K[

IC⊗E , Z j J1,x0
]
, IC⊗E

]
, (3.32)

I3 = −
2n∑

j=1

∂( f g)x0
∂Z j

(0)K [
IC⊗E , Z j J1,x0

]

+ f (x0)
2n∑

j=1

∂gx0
∂Z j

(0)K [
IC⊗E , Z j J1,x0

]

+
2n∑

j=1

∂ fx0
∂Z j

(0)g(x0)K
[K[

IC⊗E , Z j IC⊗E
]
, J1,x0

]
, (3.33)
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I4 = −
2n∑

j=1

∂( f g)x0
∂Z j

(0)K [
J1,x0 , Z j IC⊗E

]

+
2n∑

j=1

∂ fx0
∂Z j

(0)g(x0)K
[K[

J1,x0 , Z j IC⊗E
]
, IC⊗E

]

+ f (x0)
2n∑

j=1

∂gx0
∂Z j

(0)K [
J1,x0 ,K

[
IC⊗E , Z j IC⊗E

]]
. (3.34)

Then using (3.9) and by (3.23)–(3.34), we get

Q2,x0( f, g) − Q2,x0( f g) = I1 + I2 + I3 + I4. (3.35)

Recall that by definition, the terms I1, I2, I3 and I4 in (3.35) are polynomials in Z , Z ′ ∈
R
2n . Thus by (3.16), in order to compute c1( f, g), it suffices to compute the values of I1, I2, I3

and I4 at Z = Z ′ = 0. We compute those values one by one in the following propositions,
using the kernel calculus described in Sect. 2.

Proposition 3.6 For all f, g and h ∈ C∞(R2n,End(Ex0)), the following formulas hold:

∑

|α|=2

∂2h

∂Zα
(0)K

[
K

[
IC⊗E ,

Zα

α! IC⊗E

]
, IC⊗E

]
(0, 0)

=
∑

|α|=2

∂2h

∂Zα
(0)K

[
IC⊗E ,

Zα

α! IC⊗E

]
(0, 0)

= 1

π

n∑

i=1

∂2h

∂zi∂ z̄i
(0)IC⊗E , (3.36)

2n∑

i, j=1

∂ f

∂Z j
(0)

∂g

∂Zi
(0)K [K [

IC⊗E , Zi IC⊗E
]
,K [

IC⊗E , Z j IC⊗E
]]

(0, 0)

= 1

π

n∑

i=1

∂ f

∂ z̄i
(0)

∂g

∂zi
(0)IC⊗E , (3.37)

so that the value at Z = Z ′ = 0 of I1 in (3.35) is given by

I1(0, 0) = − 1

π

2n∑

j=1

∂ fx0
∂z j

(0)
∂gx0
∂ z̄ j

(0)IC⊗E . (3.38)

Proof From (2.18), (2.19) and (2.21), we get
∑

|α|=2

K[K[
IC⊗E , Zα IC⊗E

]
, IC⊗E

] =
∑

|α|=2

K[K[
(Z ′)α IC⊗E , IC⊗E

]
, IC⊗E

]

=
∑

|α|=2

K [
(Z ′)α IC⊗E , IC⊗E

]

=
∑

|α|=2

K [
IC⊗E , Zα IC⊗E

]
, (3.39)

123



554 L. Ioos

which shows the first equality of (3.36). On another hand, by Proposition 2.2, (2.6) and
(2.30), we compute for h ∈ C∞(R2n,End(Ex0)),

∑

|α|=2

∂2h

∂Zα
(0)K

[
IC⊗E ,

Zα

α! IC⊗E

]
= 1

π

n∑

i=1

∂2h

∂zi∂ z̄i
(0)IC⊗E +

n∑

i, j=1

(
∂2h

∂zi∂z j
(0)zi z j

+ ∂2h

∂ z̄i∂ z̄ j
(0)z̄′i z̄′j + ∂2h

∂zi∂ z̄ j
(0)zi z̄

′
j

)
IC⊗E .

(3.40)

Evaluating (3.40) at Z = Z ′ = 0 then gives (3.36).
By (2.6) and (2.30), we get for any f ∈ C∞(X,End(E)),

K
[
IC⊗E ,

2n∑

i=1

∂ fx0
∂Zi

(0)Zi IC⊗E

]
=

n∑

i=1

(
∂ fx0
∂zi

(0)zi + ∂ fx0
∂ z̄i

(0)z̄′i
)
IC⊗E . (3.41)

By (2.21), (2.22), (2.30) and (3.41), in the same way than in (3.40), we get at Z = Z ′ = 0
for all f, g ∈ C∞(X,End(E)),

2n∑

i, j=1

K
[
K

[
IC⊗E ,

∂ f

∂Zi
(0)Zi IC⊗E

]
,K

[
IC⊗E ,

∂g(0)

∂Z j
Z j IC⊗E

]]
(0, 0)

=
n∑

i=1

∂ f

∂ z̄i
(0)

∂g

∂zi
(0)K [

z̄′i IC⊗E , zi IC⊗E
]
(0, 0)

= 1

π

n∑

i=1

∂ f

∂ z̄i
(0)

∂g

∂zi
(0)IC⊗E . (3.42)

As IC⊗E commutes with any A ∈ End(Ex0), from (3.42) we get (3.37).
Finally, by the formula (3.31) for I1, Eqs. (3.36) and (3.37) give

I1(0, 0) = 1

π

n∑

i=1

(
−∂2( f g)x0

∂zi∂ z̄i
(0) + f (x0)

∂gx0
∂zi∂ z̄i

(0)

+ ∂2 fx0
∂zi∂ z̄i

(0)g(x0) + ∂ fx0
∂ z̄i

(0)
∂gx0
∂zi

(0)

)
IC⊗E . (3.43)

The equality (3.38) then follows immediately from (3.43) by Leibniz rule. ��
Let us point out that all the terms of I2, I3 and I4 in (3.31), (3.32) and (3.33) contain J1,x0 .

We already see from its expression in (3.10) that the computations will involve the explicit
expression of O1, and we will thus need to use Proposition 3.5.

Proposition 3.7 For any 1 ≤ i ≤ 2n, the following formulas hold:

K [
IC⊗E ,K [

J1,x0 , Zi IC⊗E
]]

(0, 0) = 0,

K [
IC⊗E ,K [

Zi J1,x0 , IC⊗E
]]

(0, 0) = 0.
(3.44)

so that

I2(0, 0) = 0, (3.45)

i.e. the polynomial I2 in (3.32) vanishes at Z = Z ′ = 0.
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Proof First, we’ve got by (2.17) and (3.10),

K [
IC⊗E ,K [

J1,x0 , Zi IC⊗E
]]

P = P(J1,x0P)(Zi IC⊗EP)

= −PO1(L
0
2 )−1P⊥(Zi IC⊗EP).

(3.46)

With the convention that operators always act on the Z variable, Eq. (3.46) gives us

K [
IC⊗E ,K [

J1,x0 , Zi IC⊗E
]]

(Z , Z ′)P(Z , Z ′)
= −PO1(L

0
2 )−1P⊥(Zi IC⊗EP(Z , Z ′))

= −
∫

R2n
(PO1(L

0
2 )−1P⊥)(Z , Z ′′)IC⊗E Z

′′
i P(Z ′′, Z ′)dZ ′′.

(3.47)

Recall that by (2.10),P(Z , Z ′) commutes with IC⊗E . By the definition of IC⊗E in (2.12),
we have i ∂

∂ z̄m
i ∂

∂ z̄l
IC⊗E = 0, so that (3.19) implies

(PO1(L
0
2 )−1P⊥)(0, Z ′′)IC⊗E = 0. (3.48)

We thus deduce from (3.47) and (3.48) that

K [
IC⊗E ,K [

J1,x0 , Zi IC⊗E
]]

(0, 0)

= −
∫

R2n
(PO1(L

0
2 )−1P⊥)(0, Z ′′)IC⊗E Z

′′
i P(Z ′′, 0)dZ ′′ = 0.

(3.49)

Equation (3.49) is precisely the first equality of (3.44).
On another hand, by (2.18) and (2.20),

K [
IC⊗E ,K [

Zi J1,x0 , IC⊗E
]] = K [

IC⊗E , ZiK
[
J1,x0 , IC⊗E

]]

= K [
Z ′
i IC⊗E ,K [

J1,x0 , IC⊗E
]]

.

(3.50)

By (3.10),

K [
J1,x0 , IC⊗E

]
P =

(
−(L 0

2 )−1P⊥O1P − PO1(L
0
2 )−1P⊥)

P

= −(L 0
2 )−1P⊥O1P.

(3.51)

But IC⊗Edz̄ld z̄m = 0 by (2.12), so analogous to (3.48) and by (3.21), we get

IC⊗E

(
(L 0

2 )−1P⊥O1P
)

(Z ′′, 0) = 0, (3.52)

so that by (3.51) and (3.52),

K [
Z ′
i IC⊗E ,K [

J1,x0 , IC⊗E
]]

(0, 0)

= −(Z ′
i P(L 0

2 )−1P⊥O1P)(0, 0)

= −
∫

R2n
Z ′′
i P(0, Z ′′)IC⊗E

(
(L 0

2 )−1P⊥O1P
)

(Z ′′, 0)dZ ′′ = 0. (3.53)

From (3.50) and (3.53), we get the second equality of (3.44).
Finally, equation (3.45) follows immediately from (3.44) and the definition of I2 in (3.32).

��
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Proposition 3.8 For any 1 ≤ i ≤ 2n, the following formulas hold:

K [
IC⊗E , Zi J1,x0

]
(0, 0) = K [

IC⊗E ,K [
IC⊗E , Zi J1,x0

]]
(0, 0)

= K[K[
IC⊗E , Zi IC⊗E

]
, J1,x0

]
(0, 0). (3.54)

K [
J1,x0 , Zi IC⊗E

]
(0, 0) = K[K[

J1,x0 , Zi IC⊗E
]
, IC⊗E

]
(0, 0)

= K [
J1,x0 ,K

[
IC⊗E , Zi IC⊗E

]]
(0, 0). (3.55)

so that the values at Z = Z ′ = 0 of I3 and I4 in (3.33) and (3.34) are respectively

I3(0, 0) = I4(0, 0) = 0, (3.56)

i.e. the polynomials I3 and I4 in (3.33) and (3.34) vanish at Z = Z ′ = 0.

Proof From (2.18), (2.19) and (2.20), we immediately get the first lines of (3.54) and (3.55).
Next, we show that

K[K[
IC⊗E , Zi IC⊗E

]
, J1,x0

]
(0, 0) = K [

IC⊗E , Zi J1,x0
]
(0, 0). (3.57)

By (2.30), remembering that Z = (z + z̄)/2, we get on one hand

K[K[
IC⊗E , Zi IC⊗E

]
, J1,x0

] = 1

2
K [

(zi + z̄′i )IC⊗E , J1,x0
]
. (3.58)

By (2.20) and (2.30), we get on another hand

K [
IC⊗E , Zi J1,x0

] = K [
Z ′
i IC⊗E , J1,x0

] = 1

2
K [

(z′i + z̄′i )IC⊗E , J1,x0
]
. (3.59)

By (3.58) and (3.59), to get (3.57) it suffices to prove the equality

K [
zi IC⊗E , J1,x0

]
(0, 0) = K [

z′i IC⊗E , J1,x0
]
(0, 0) = 0. (3.60)

At first, by (2.21) we have

K [
zi IC⊗E , J1,x0

] = ziK
[
IC⊗E , J1,x0

]
, (3.61)

so that

K [
zi IC⊗E , J1,x0

]
(0, 0) = 0. (3.62)

Then, by (2.30) and (3.10),

K [
z′i IC⊗E , J1,x0

]
P = K [

IC⊗E , zi J1,x0
]
P

= −P
(
zi (L

0
2 )−1P⊥O1P

)

−P
(
zi PO1(L

0
2 )−1P⊥)

. (3.63)

As IC⊗Edz̄ld z̄m = 0 by (2.12), analogous to (3.48) and (3.52), by (3.21),

IC⊗E

(
(L 0

2 )−1P⊥O1P
)

(Z , 0) = 0. (3.64)

As P = P IC⊗E by (2.13), we deduce that

P
(
zi (L

0
2 )−1P⊥O1P

)
(0, 0) =

∫

R2n
P(0, Z ′′)z′′i IC⊗E

(
(L 0

2 )−1P⊥O1P
)

(Z ′′, 0)dZ ′′

= 0,

(3.65)
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i.e. the kernel of the first term of the last line of (3.63) cancels at Z = Z ′ = 0. On the other
hand, by (3.20) we can write

(
zi PO1(L

0
2 )−1P⊥)

(Z , 0) = H(z)P(Z , 0), (3.66)

with H(z) ∈ End(�(T ∗(0,1)X) ⊗ E)x0 polynomial in z ∈ C
n . Recall from (2.23) that in this

case, again with the convention that operators act on the Z variable, we get

P(H(z)P)(Z , 0) = H(z)P(Z , 0), (3.67)

so that by (2.13), (2.27), (3.66) and (3.67),

P
(
zi PO1(L

0
2 )−1P⊥)

(Z , 0) =
(
zi PO1(L

0
2 )−1P⊥)

(Z , 0)

= zi
(
PO1(L

0
2 )−1P⊥)

(Z , 0), (3.68)

which vanishes at Z = 0. By (3.63), (3.65) and (3.68), we thus get

K [
z′i IC⊗E , J1,x0

]
(0, 0) = 0. (3.69)

Equation (3.69), together with (3.58), (3.59) and (3.62), proves (3.54).
Now concerning (3.55), we are left to show that

K [
J1,x0 , Zi IC⊗E

]
(0, 0) = K [

J1,x0 ,K
[
IC⊗E , Zi IC⊗E

]]
(0, 0). (3.70)

By (2.30) we have

K [
J1,x0 ,K

[
IC⊗E , Zi IC⊗E

]] = 1

2
K [

J1,x0 , (zi + z̄′i )IC⊗E
]
. (3.71)

To get (3.70), it suffices thus to show that

K [
J1,x0 , z̄i IC⊗E

]
(0, 0) = K [

J1,x0 , z̄
′
i IC⊗E

]
(0, 0) = 0. (3.72)

The equality on the right of (3.72) comes from (2.21). On another hand, by (3.9) and
(3.10),

K [
J1,x0 , z̄i IC⊗E

]
P = −PO1(L

0
2 )−1P⊥(z̄i IC⊗EP)

−(L 0
2 )−1P⊥O1P(z̄i IC⊗EP). (3.73)

Now by (3.48), once again the kernel of the first term of the left member of (3.73) vanishes
at Z = Z ′ = 0. On another hand, by (2.25),

P(z̄i IC⊗EP) = P(z̄′i IC⊗EP). (3.74)

We can thus replace z̄i by z̄′i in the second term of the left member of (3.73), and by (2.27)
we get finally

((L 0
2 )−1P⊥O1Pz̄i IC⊗EP)(Z , Z ′) = ((L 0

2 )−1P⊥O1P IC⊗EP)(Z , Z ′)z̄′i , (3.75)

which is 0 at Z = Z ′ = 0. Thus the kernel of the second term of (3.73) cancels as well in
this case, which means

K [
J1,x0 , z̄i IC⊗E

]
(0, 0) = 0, (3.76)

Finally, (3.76) implies (3.72), which together with (3.57) concludes the proof of (3.55).
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The definitions of I3 and I4 in (3.33) and (3.33) and equation (3.54) and (3.55) respectively
give

I3(0, 0) =
2n∑

i=1

(
f (x0)

∂gx0
∂Zi

(0) + ∂ fx0
∂Zi

(0)g(x0) − ∂( f g)x0
∂Zi

(0)

)

×K [
IC⊗E , Zi J1,x0

]
(0, 0),

I4(0, 0) =
2n∑

i=1

(
f (x0)

∂gx0
∂Zi

(0) + ∂ fx0
∂Zi

(0)g(x0) − ∂( f g)x0
∂Zi

(0)

)

×K [
J1,x0 , Zi IC⊗E

]
(0, 0), (3.77)

and those two formulas vanish by Leibniz rule. We thus get (3.56). ��
Using Propositions 3.6, 3.7 and 3.8, the kernel of (3.35) at Z = Z ′ = 0 simply is

Q2,x0( f, g)(0, 0) − Q2,x0( f g)(0, 0) = − 1

π

n∑

j=1

∂ fx0
∂z j

(0)
∂gx0
∂ z̄ j

(0)IC⊗E . (3.78)

We thus see that Q2,x0( f, g)(0, 0) − Q2,x0( f g)(0, 0) is in fact of the form C1( f, g)(x0)
IC⊗E with C1( f, g)(x0) ∈ End(Ex0) given by

C1( f, g)(x0) = − 1

π

n∑

j=1

∂ f

∂z j
(x0)

∂g

∂ z̄ j
(x0). (3.79)

From (2.5) and the definition of the pairing 〈., .〉 used in (1.11), we can take this equality
to the manifold through our trivialization and we finally get

C1( f, g) = − 1

2π
〈∇1,0 f,∇0,1g〉. (3.80)

This proves Proposition 1.1.
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